Тема ПВГ (Покори Воробьёвы Горы)

ПВГ - задания по годам .15 ПВГ 2023

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Разделы подтемы ПВГ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#67951

Решите уравнение

   √-                 √-                   2(   π )
1−  2 cosx(sinx+ 2cosx)+  2sinx(2sinx − cosx) =2sin x + 8

Источники: ПВГ-2023, 10.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Справа внутри синуса есть какой-то π/8, что не очень приятный угол, а еще там сам синус в квадрате. Чем можно воспользоваться в таком случае?)

Подсказка 2

Например, формулой понижения степени! Тогда там появится 1-cos(2x+π/4), что уже лучше. Раз мы тут преобразовали к двойному углу, то может слева так тоже выйдет?

Подсказка 3

Если раскрыть скобки в левой части, то получится 2√2(sin²x-cos²x) - 2√2sinx⋅cosx, что очень хорошо раскладывается на двойные углы) Осталось достаточно приятное уравнение, которое не доставит вам проблем)

Показать ответ и решение

Раскроем скобки и в правой части воспользуемся формулой понижения степени:

   √-          √-  2    √ -  2   √-              (    π)
1−  2cosxsinx− 2 2cosx +2  2sin x−  2sinxcosx= 1− cos 2x+ 4 ;

 √-              √-            1         1
2 2(sin2x− cos2x)− 2 2 sinxcosx = −√2-cos(2x)+ √2-sin(2x);

Домножим на  √ -
(−  2)  и выделим формулы двойных углов:

4cos(2x)+ 2sin(2x) =cos(2x)− sin(2x);

sin(2x)=− cos(2x);

Если cos(2x)= 0,  то получим, что sin(2x)=0,  что противоречит основному тригонометрическому тождеству. Значит, можно поделить на cos(2x),  имеем:

tg (2x)= −1.

Откуда x= − π8 + πn2 ,n ∈ℤ

Ответ:

− π + πn,n ∈ℤ
  8  2

Ошибка.
Попробуйте повторить позже

Задача 2#67952

Из пункта A  в пункт B  по одной дороге с постоянными скоростями выехали велосипедист и мотоциклист. Один из них выехал в 13:00, а другой на час раньше, при этом в пункт B  они прибыли одновременно, хотя один из них сделал остановку в пути длительностью 2 часа. В котором часу они прибыли в пункт B,  если скорость мотоциклиста в два раза больше скорости велосипедиста?

Источники: ПВГ-2023, 10.2 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Интуитивно кажется, что велосипедист не может останавливаться на 2 часа: ведь он и так медленный, куда ему еще останавливаться....Попробуйте строго доказать это)

Подсказка 2

Если велосипедист останавливался на 2 часа, то уже не важно, раньше он выехал или позже: он будет ехать меньше времени, чем мотоциклист, а т.к. он еще и медленнее, то они точно не приедут в одно время) Осталось разобрать всего два случая: когда он выехал раньше, или когда мотоциклист выехал раньше.

Показать ответ и решение

Можно рассмотреть четыре случая (они соответствуют тому, что кто-то один из двоих стартовал первым, и кто-то один из двоих сделал остановку).

Но можно заметить, что если остановку делал велосипедист, то не важно, выехал он раньше или позже мотоциклиста, в движении он находился меньше времени, чем мотоциклист, и поэтому в В приедет позже. Значит, остановку делал мотоциклист. Тогда, обозначая через t  время движения велосипедиста и через V  его скорость, получаем два случая:
а) Если велосипедист выехал раньше, то Vt= 2V(t− 3),  откуда t=6.  Поэтому время финиша равно 12:00+ 6= 18:00.
б) Если мотоциклист выехал раньше, то Vt= 2V(t− 1),  откуда t= 2.  Тогда время финиша равно 13:00+ 2= 15:00.

Ответ:

 15:00  или 18:00

Ошибка.
Попробуйте повторить позже

Задача 3#67953

Числа x ,x ,x
 1  2 3  являются корнями уравнения x3 +6x2+ 7x +1 =0.  При каких значениях a,b,c  корнями уравнения  3    2
x + ax +bx+ c= 0  являются числа x1+x2,x2+ x3  и x3+ x1?

Источники: ПВГ-2023, 10.3 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

По условию достаточно очевидно, что нужно пользоваться именно теоремой Виета) Так что давайте находить коэффициенты по очереди. Что легче всего сейчас найти?

Подсказка 2

Сумму новых корней! Это будет просто 12. Дальше нужно постараться выразить оставшиеся выражения, которым равны новые коэффициенты, с помощью известных нам. Например, попробуйте выразить b с помощью попарных произведений и суммы корней изначального многочлена, а c - через все три выражения: сумму, сумму попарных произведений, и произведения корней.

Подсказка 3

Если b найти просто, то c последним коэффициентом могут быть трудности. Такое наблюдение: попробуйте вынести за скобки из всего этого выражения сумму изначальных корней)

Показать ответ и решение

По теореме Виета для первого уравнения:

( − 6= x +x + x ,
|{      1   2   3
|( 7 =x1x2+ x1x3+ x2x3,
  − 1= x1x2x3.

Из этой же теоремы для второго уравнения:

−a =(x1+ x2)+ (x2+x3)+ (x3+ x1);

−a= 2(x + x + x).
      1   2   3

Откуда получим, что a= 12.  Далее найдем b :

b=(x1+ x2)(x2+x3)+ (x1+ x2)(x3+ x1)+ (x3 +x1)(x2+ x3)=3(x1x2 +x1x3+ x2x3)+ (x2+ x2+ x2);
                                                                    1   2   3

b= (x1+ x2+ x3)2+ (x1x2+ x1x3+ x2x3) =43.

Наконец, найдем c:

c= −(x1+x2)(x2+ x3)(x3+ x1) =−(−6 − x1)(−6 − x2)(−6 − x3).

Пусть       3   2
f(x)= x +6x + 7x+ 1.  Из условия f(x)= (x − x1)(x − x2)(x− x3).  Тогда заметим, что c =− f(−6)= 41.

Ответ:

 a =12,b=43,c= 41

Ошибка.
Попробуйте повторить позже

Задача 4#67954

В треугольнике ABC  биссектриса BE  и медиана AD  равны и перпендикулярны. Найдите площадь треугольника ABC,  если      √--
AB =  26.

Источники: ПВГ-2023, 10.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Вот пусть у нас треугольник ABC, медиана AD и биссектриса BE. Что сразу бросается в глаза, когда у нас биссектриса перпендикулярна чему-то (в нашем случае - медиане)?

Подсказка 2

Да, тут должен быть равнобедренный треугольник! Как раз подходит ABD. И отсюда мы уже получается знаем вторую сторону треугольника. Что еще удобно было бы найти, чтобы найти площадь треугольника?

Подсказка 3

Было бы не плохо найти угол между этими сторонами, чтобы воспользоваться формулой площади по двум сторонам и углу между ними) А вот из каких соображений его можно найти: у нас половинка этого угла содержится в прямоугольном треугольнике. Тогда если мы найдем отношения каких-то его сторон, то найдем и сам угол!

Подсказка 4

Вот пусть пересечение медианы и биссектрисы это точка F. Понятно, что AF = FD. А вот как относятся друг к другу BF и EF....Может, это отношение содержится в каком-то треугольнике, где уже есть несколько известных отношений?

Подсказка 5

Попробуйте рассмотреть т. Менелая для треугольника EBF и прямой AD, также не забывая пользоваться хорошим свойством биссектрисы! А дальше уже дело техники)

Показать ответ и решение

Пусть BE = AD = 2a,AB = c,∠ABC = β,AD ∩BC = F.  Так как BF  — высота и биссектриса треугольника BDA,  то этот треугольник равнобедренный, поэтому BA = BD =c,AF =F D =a

PIC

Первое решение.

По теореме Менелая для треугольника EBC  и прямой AD :

EF  BD  CA
FB-⋅DC-⋅AE-= 1

Так как BD = DC = 2c  и так как по свойству биссектрисы CAAE-=1+ CAEE-= 1+ CBBA-=1 + 2cc = 3,  то остаётся соотношение

EF- ⋅3 =1  ⇐ ⇒  EF = a,FB = 3a
F B                 2      2

Тогда по теореме Пифагора для треугольника AFB :

a2+(3a)2 = 26
     2

   √-
a=  8

Тогда      ∘ --       ∘--
sinβ2 =  286,cosβ2 =  1286  и по формуле синуса двойного угла площадь треугольника можно выразить как

                             ∘ ---∘ ---
S    = 1 ⋅c⋅2c⋅2sin βcosβ =26⋅2⋅ 8-⋅  18= 2⋅12= 24
 ABC  2          2   2         26   26

Второе решение.

По формуле для длины биссектрисы:

    2 ⋅2c⋅c   β
2a= -2c+c-cos2;

3a = c⋅cosβ.
 2       2

Из треугольника BDF  получим, что

        β
a= c⋅sin 2

Поделим эти уравнения друг на друга и получим, что

  β   2
tg2 = 3

Тогда из основного тригонометрического тождества:   β         β
cos2 = √313,sin 2 = √213.  Значит, из формулы синуса двойного угла sinβ = 1123.  Наконец,

SABC =c2sinβ =24
Ответ: 24

Ошибка.
Попробуйте повторить позже

Задача 5#67955

На сфере расположены точки A,B,C  таким образом, что минимальные расстояния по поверхности сферы от точки A  до точки B,  от точки A  до точки C  и от точки B  до точки C  равны 4π,3π  и 5π  соответственно. Найдите минимальный возможный при таких условиях периметр треугольника ABC.

Источники: ПВГ-2023, 11.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала представим, что такое расстояние на сфере? Это дуга наименьшей длины окружности с центром, совпадающим с центром сферы. Тогда какую оценку на радиус сразу можно понять из условия?

Подсказка 2

Верно, радиус не может быть меньше 5, как тогда получается наибольшая длина окружности 10π, а половина меньше 5π. Давайте теперь поймём, как можно посчитать стороны треугольника ABC. Любые две точки на сфере лежат также на окружности с радиусом сферы. Какую тогда теорему можно вспомнить, связанную с этими величинами?

Подсказка 3

Точно, это теорема синусов. Но проблема с углом напротив стороны, кажется, что мы его не знаем. А что такое угол напротив стороны с точки зрения длины дуги в радианах и радиуса?

Подсказка 4

Верно, это по формуле отношение длины дуги к радиусу. Причём помните, что у нас есть ограничение на длину дуги. Мы берём наименьшую, а значит, не больше, чем половину длины окружности. Сложив теперь аналогичные длины сторон, получим периметр нашего треугольника. Мы должны найти его минимальное значение. Посмотрим, от какой переменной зависит это выражение и не можем ли мы тогда проанализировать его как функцию?

Подсказка 5

Точно, оно зависит только от радиуса, а значит, можно исследовать выражение как функцию, взять производную и что-то понять про него. Например, что она возрастающая на некотором подходящем нам интервале. После этого мы переформулируем задачу на нахождение минимального радиуса. Как тогда можно понять, что функция возрастает? Попробуйте вынести косинус и вспомнить, что отношение дуги к радиусу у нас может быть равно только от 0 до π/2.

Подсказка 6

Ага, функция возрастает, потому что tgx>x, x ∈ (0; π/2). А у нас как раз такого вида выражение. Ура, уже хорошо! Теперь осталось оценить радиус. Какие есть мысли по этому поводу? Так как у нас должен быть минимальный радиус, то можно по минимуму "сжать" сферу. Тогда какой вариант радиуса подойдёт?

Подсказка 7

Верно, можно взять сферу радиуса 6, так как сложив наименьшую длину всех дуг по условию, то получим, что это длина окружности с радиусом 6. Осталось понять, почему нельзя взять меньший радиус. Попробуем взять на сфере радиуса 6 произвольную точку А. Тогда где могут находиться точки С, если смотреть на сферу с точки зрения глобуса? А исходя из этого, где лежат точки B?

Подсказка 8

Верно, так как расстояние 3π, то эти точки будут расположены где-то на "экваторе". Теперь если рассмотрим возможные расстояния от С до B, то они снова будут лежать где-то на параллели. Осталось только рассмотреть, какое максимальное расстояние в принципе возможно от А до В, и понять, почему любые смещения по "параллелям" и "меридианам" будут плохи. Победа!

Показать ответ и решение

Сначала необходимо заметить, что кратчайшее расстояние между двумя расположенными на сфере точками по ее поверхности это длина меньшей дуги, проходящей через эти две точки окружности, центр которой совпадает с центром сферы. Отсюда сразу следует первая оценка на радиус сферы: он не может быть меньше, чем 5.  В противном случае длина самой большой окружности, расположенной на сфере, меньше, чем 10π  , и длина ее меньшей дуги будет меньше, чем 5π,  что противоречит условию задачи.

PIC

Обозначим радиус сферы за R,  ее центр обозначим буквой O.  Рассмотрим две произвольные точки M, N,  пусть длина дуги MN  равна d,  отметим, что 0< d≤ πR.  Из сектора и треугольника OMN  имеем:

           d            d
α= ∠MON  = R,MN  =2R sin2R-

Из этой формулы следует, что периметр треугольника ABC  равен:

2R(sin 3π-+sin 2π+ sin 5π)
     2R     R     2R

Рассмотрим функцию одной переменной:

f(R)= Rsin q-
          R

Тогда f′(R)= sin q-− qcos q-=cos q(tg q− q-),
         R   R   R     R   R  R  что положительно при 0< q-≤ π ,
   R   2  так как tgx> x,x∈(0;π).
            2
Обратим внимание, что все три слагаемых, входящих в периметр, являются такого сорта функциями, при этом радиус R  не может быть меньше, чем 5 и, следовательно, величина t= q∕R  во всех трех слагаемых принадлежит полуинтервалу (0,π∕2].  Поэтому периметр треугольника ABC  является возрастающей функцией параметра R  и, следовательно, задача сводится к следующей: найти минимальный радиус сферы, на которой могут быть расположены точки A,B,C,  удовлетворяющие данным из условия задачи.
Обоснование того, что минимальный радиус равен 6,  состоит из двух тезисов. Во-первых, на сфере радиуса 6  расположить три точки в соответствии с условием задачи можно: достаточно взять экватор сферы, его длина равна 12π,  что равно сумме данных в условии расстояний. Берем произвольную точку A  на этой окружности, проходим по часовой стрелке расстояние 4π,  отмечаем точку B, проходим еще 5π,  отмечаем точку C.
Во-вторых, на сфере радиуса, меньшего чем 6, точки расположить не получится. Чтобы это доказать, проведем аналогию с глобусом. Представим себе, что точка C  это северный полюс планеты радиуса 6. Тогда геометрическим местом точек A,  кратчайшее расстояние от которых по сфере до точки C  равно 3π,  будет параллель-«экватор», а геометрическим местом точек B,  кратчайшее расстояние от которых по сфере до точки C  равно 5π,  будет параллель в южном полушарии. Максимальное расстояние между точкой с «экватора» и точкой с «южной» параллели как раз равно 4π,  и будет достигаться в случае, когда эти точки расположены на противоположных меридианах. Любые меридиональные смещения одной из точек, очевидно, уменьшат расстояние между ними. Попытка уменьшить радиус сферы-планеты приведет к тому, что параллели, на которых лежат точки A  и B,  сместятся ближе к южному полюсу, и максимальное из расстояний между точками с этих параллелей (которое по-прежнему достигается в случае их расположения на противоположных меридианах) уже будет менее, чем 4π.  Итак, минимально возможный радиус сферы равен 6, откуда получаем ответ:      π     π    5π
12(sin4 + sin 3 + sin12).

Ответ:

 12(sinπ+ sin π+ sin5π)
     4     3    12

Ошибка.
Попробуйте повторить позже

Задача 6#67956

Для натурального числа N  выписаны все его натуральные делители p
 i  в порядке возрастания 1< p <p ...<p = N.
   1   2     k

Обозначим количество натуральных делителей числа N  через σ(N ).

Найдите все возможные значения    3
σ(N ),  если известно, что

                  2
p3⋅p4⋅p1696⋅p1697 ≥N

Источники: ПВГ-2023, 10.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем, что можно сделать с большими по номеру делителями. Например мы знаем, что если p - наибольший делитель, а q - наименьший, то p = N/q. Как развить эту идею?

Подсказка 2

Вот пусть у N ровно n ≥ 1697 делителей. Тогда p₁₆₉₇ = N/pₙ₋₁₆₉₇₊₁, p₁₆₉₆ = N/pₙ₋₁₆₉₆₊₁. Тут уже при перемножении мы получаем N² и это хорошо. Но еще получаем в знаменателе два подряд идущих делителя. При каких n это все еще будет выполняться условие?

Подсказка 3

Если n уже ≥ 1700, то внизу будет стоять ≥ p₄⋅p₅, что больше чем p₃⋅p₄, то есть наше выражение будет уже < N². Остается n < 1700, и несложным перебором можно найти примеры на эти n и найти число делителей у N³)

Показать ответ и решение

По основной теореме арифметики N  представляется единственным образом в виде:

     α1 α2   αn
N = q1 ⋅q2 ⋅⋅⋅qn ,где qi− простое число

Тогда из правила произведения, поскольку мы каждую степень простого числа q
 i  выбираем α +1
 i  способами, то σ(N)= (α + 1)⋅(α + 1)⋅⋅⋅(α + 1).
        1      1       n  Из условия следует, что σ(N)≥ 1697.  Разберем несколько случаев:

1.

Пусть σ(N)= 1697.  Тогда:

                     N
1 =p1 < p2 < ⋅⋅⋅< p1696 = p2 < p1697 = N.

Значит, p3⋅p4⋅p1696⋅p1697 = p3⋅p4N2 ≥ N2.
                  p2  То есть условие выполняется.
Так как 1697− простое число, то из формулы для σ(N )  следует, что N = q1696  (в противном случае 1697 было бы составным).Таким образом,

σ(N3) =(3⋅1696+ 1)= 5089.
2.

Пусть σ(N)= 1698.  Тогда:

                     N-        N-
1 =p1 < p2 < ⋅⋅⋅< p1696 = p3 < p1697 = p2 < p1698 = N.

Значит, p3⋅p4⋅p1696⋅p1697 = pp42N2 ≥ N2.  То есть условие выполняется.
Так как 1698 =(1697+ 1)= (1 +1)(848+ 1)= (2+ 1)(565+ 1)  и
1698= (5+ 1)(282+ 1)= (1+ 1)(2+1)(282+ 1),  то:

   3
σ(N ) =(3⋅1697+ 1)= 5092;

σ(N3)= (3 ⋅1 +1)(3⋅848+ 1) =10180;

   3
σ(N )= (3 ⋅2 +1)(3⋅565+ 1) =11872;

   3
σ(N )= (3 ⋅5 +1)(3⋅282+ 1) =13552;

σ(N3 )=(3⋅1+ 1)(3⋅2+ 1)(3⋅282+ 1)= 23716.
3.

Пусть σ(N)= 1699.  Тогда:

1 =p1 < p2 < ⋅⋅⋅< p1696 = N-< p1697 = N-< p1698 < p1699 = N.
                     p4        p3

Значит, p3⋅p4⋅p1696⋅p1697 = N2 ≥ N2.  То есть условие выполняется.
Так как 1699− простое число, то из формулы для σ(N )  следует, что N = q1698  (в противном случае 1699 было бы составным).Таким образом,

σ(N3) =(3⋅1698+ 1)= 5095.
4.

Пусть σ(N)≥ 1700.  Тогда p1696 < Np,p1697 < Np-.
       3        2  Следовательно, p3⋅p4⋅p1696 ⋅p1697 <N2.  Таким образом, этот случай невозможен.

Ответ:

 5089,5092,5095,10180,11872,13552,23716

Рулетка
Вы можете получить скидку в рулетке!