Тема Физтех и вступительные по математике в МФТИ

Физтех - задания по годам .13 Физтех 2021

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Разделы подтемы Физтех - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#33347

 S  - сумма первых 10  членов возрастающей арифметической прогрессии a ,a,a ,...
 1  2 3  , состоящей из целых чисел. Известно, что a6a12 >S +1,a7a11 < S +17  . Укажите все возможные значения a1  .

Источники: Физтех - 2021, 11.1 (см. olymp.mipt.ru)

Показать ответ и решение

Обозначим разность прогрессии через d  . Данные в условии неравенства можно преобразовать следующим образом:

{  (a + 5d)(a +11d)> S+ 1,
   (a1+ 6d)(a1+10d)< S+ 17
    1      1

{ a21+ 16a1d+ 55d2 >S +1
  a2+ 16a1d+ 60d2 <S +17
   1

Вычитая из второго неравенства первое (а это можно сделать, так как они разного знака), получаем 5d2 < 16  . Из условия следует, что d ∈ℤ  , поэтому d= 1  (|d|≤1  и прогрессия возрастает). Тогда a10 = a1+ 9  и S = a1+a210⋅10=  5(a1 +a1+ 9)=10a1+ 45  , и система неравенств принимает вид

{
  a21+ 16a1+55> 10a1+45+ 1,
  a21+ 16a1+60< 10a1+45+ 17

{
  a21+ 6a1 +9> 0,
  a21+ 6a1 − 2< 0

{
  a1 ⁄= −3, √--    √--
  a1 ∈ (−3 − 11;−3+  11).

Так как a1 ∈ ℤ  , то a1 ∈ {− 6;−5;−4;−2;−1;0} .

Ответ:

− 6;−5;−4;− 2;−1;0

Критерии оценки

Составлена система неравенств относительно одного из членов прогрессии и её разности – отдельно не оценивается; найдена разность прогрессии – 2 балла; получено неравенство на разность прогрессии вида 0 < 𝑑 < √ 𝑎, но забыто, что разность целая, и поэтому разность не найдена – 1 балл вместо 2; составлена и решена система неравенств относительно первого члена прогрессии – 2 балла; если при этом приобретена одна лишняя точка, то 1 балл вместо 2; указаны целочисленные значения переменной – 1 балл (этот балл ставится, даже если приобретена одна лишняя точка).

Ошибка.
Попробуйте повторить позже

Задача 2#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Источники: Физтех - 2021, 11.2 (см. olymp.mipt.ru)

Показать ответ и решение

Пусть E  — середина AB.CE  и DE  — медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  .

PIC

Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью — окружность, а AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB− диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB =1  . Действительно, из треугольников ACE  и ADE  следует, что

CE = ∘52-− 12 = 2√6,DE = ∘62−-12 = √35

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =       √-
BH =  2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =           --              --
√25− 2-=√ 23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 3#33369

Пусть M  - фигура на декартовой плоскости, состоящая из всех точек (x;y)  таких, что существует пара вещественных чисел a,b  , при которых выполняется система неравенств

{ (x− a)2+ (y− b)2 ≤ 2
   2  2
  a + b ≤min(2a +2b;2)

Найдите площадь фигуры M  .

Источники: Физтех-2021, 11.3 (см. olymp-online.mipt.ru)

Показать ответ и решение

Второе неравенство равносильно системе неравенств

{ a2+b2 ≤ 2a+ 2b
  a2+b2 ≤ 2

Значит, исходная система равносильна следующим:

(|{  (x − a)2+ (y− b)2 ≤2,
   a2+b2 ≤ 2a+ 2b,
|(  a2+b2 ≤ 2

(|{ (a− x)2+ (b− y)2 ≤2
  (a− 1)2+ (b− 1)2 ≤2
|( a2+ b2 ≤2

Множества точек, задаваемых этими неравенствами на плоскости (a;b) (x  и y  при этом выступают в роли параметров), - это круги ω1,ω2,ω3  радиуса √-
 2  с центрами P(x;y),B (1;1),A(0;0)  соответственно. Условие задачи означает, что полученная система должна иметь решение относительно (a;b)  , то есть все три круга должны иметь по крайней мере одну общую точку.

PIC

Пусть окружности, ограничивающие ω2  и ω3  , пересекаются в точках C  и D  (тогда треугольники ABC  и ABD  - равносторонние). Пересечение кругов ω2  и ω3  есть фигура F  , представляющая собой совокупность двух меньших сегментов этих кругов, ограниченных хордой CD  . Тогда фигура M  состоит из всевозможных точек (x;y)  , находящихся на расстоянии не более √2  от фигуры F  . (Это совокупность всех кругов радиуса √2  , центры которых принадлежат фигуре F  .)

Пусть точки P  и Q  симметричны точкам A  и B  (соответственно) относительно точки C  ; точки T  и R  симметричны точкам    A  и B  (соответственно) относительно точки D  .

А само множество M  есть объединение следующих четырёх секторов (центральный угол всех секторов меньше   ∘
180 ):

  • сектор PAT  круга с центром в точке A  и радиуса AP
  • сектор QBR  круга с центром в точке B  и радиуса BQ
  • сектор PCQ  круга с центром в точке C  и радиуса CP
  • сектор RDT  круга с центром в точке D  и радиуса DT

Заметим, что первые два сектора пересекаются по ромбу ACBD  , и никаких других пересечений между секторами нет. При этом первые два сектора равны между собой, и последние два сектора также равны между собой. Таким образом, площадь фигуры M  равна

SM = SPAT + SQBR +SPCQ +SRDT − SACBD =

      √-        √-    √-
=2 ⋅ π(2-2)2+ 2⋅ π(-2)2-−-3⋅(√2)2 =
      3         6     2

     √-
=6π − 3
Ответ:

 6π− √3

Критерии оценки

Изображено множество точек (в плоскости (𝑎; 𝑏), удовлетворяющих второму неравенству системы – 2 балла; указано (или изображено, описано) множество решений первого неравенства – баллы не добавляются; верно описан способ построения фигуры 𝑀 (например, совокупность кругов заданного радиуса, центры которых лежат в некотром множестве), но сама она построена неверно – 1 балл; изображена фигура 𝑀 – 3 балла; найдена её площадь – 2 балла. Если фигура 𝑀 изображена неверно, нахождение площади не оценивается, и за задачу ставится не более 3 баллов. Если фигура 𝑀 представляет собой пересечение двух кругов с центрами 𝐴 и 𝐵 радиусов 2𝐴𝐵, за задачу ставится 3 балла (при этом не играет роли, найдена ли площадь)

Ошибка.
Попробуйте повторить позже

Задача 4#33372

Найдите количество троек натуральных чисел (a;b;c)  , удовлетворяющих системе уравнений

{ HO Д(a;b;c)=6,
  HO К(a;b;c)=215⋅316.

Источники: Физтех - 2021, 11.4 (см. olymp.mipt.ru)

Показать ответ и решение

Пусть a =2α1 ⋅3α2,b= 2β1 ⋅3β2,c= 2γ1 ⋅3γ2  (никаких других простых множителей числа a  , b,c  содержать не могут - иначе нарушается второе условие системы). Отсюда

            max(α ;β ;γ)  max(α ;β ;γ )             min(α ;β ;γ ) min(α ;β ;γ )
HOK (a;b;c)= 2    1 1 1⋅3    2 2 2,  HOД(a;b;c)= 2   1 1 1 ⋅3   2 2 2.

Учитывая данную в условии систему, получаем соотношения

{ max(α1;β1;γ1)= 15,    { max (α2;β2;γ2)= 16,
  min(α1;β1;γ1)= 1    и   min(α2;β2;γ2)=1.    (1)

Рассмотрим первую систему (1)  . Возможны следующие наборы чисел (α1;β1;γ1)  :

(1;1;15)− 3  набора (за счёт различных перестановок этих чисел);

(1;15;15)  — также три набора;

(1;k;15)  , где 2 ≤k ≤14− есть 13  различных значений k  и для каждого из них 6  перестановок — всего 78  вариантов.

Итак, есть 3+ 3+6 ⋅13= 84  способа выбрать тройку чисел (α1;β1;γ1)  . Аналогично устанавливаем, что для выбора (α2;β2;γ2)  есть 3+ 3+ 6⋅14= 90  (2 ≤k ≤15  14  значений) способов. И поскольку один выбор осуществляется независимо от другого, то общее количество способов равно 84⋅90 =7560  .

Ответ:

 7560

Критерии оценки

Найдено количество троек для степеней одного из простых чисел только в одном случае – 2 балла.

Получено одно или оба соотношения вида {︃ max (𝛼1; 𝛽1; 𝛾1) = 𝑘, min (𝛼1; 𝛽1; 𝛾1) = 1 и {︃ max (𝛼2; 𝛽2; 𝛾2) = 𝑚, min (𝛼2; 𝛽2; 𝛾2) = 1. и других продвижений нет – 1 балл за задачу (этот балл не суммируется с указанным выше).

Неарифметическая (комбинаторная) ошибка (вместо правила произведения применено правило суммы, некоторые случаи посчитаны дважды или пропущены и т.п.) – не более 1 балла за задачу.

Неверно решена «числовая часть» (из условия сделаны неверные выводы, например, утверждается, что одно из чисел должно равняться произведению 𝑝^𝑚𝑎𝑥 𝑞^𝑚𝑎𝑥 или 𝑝𝑞; используются неверные утверждения, например, НОД(𝑎, 𝑏, 𝑐) НОК(𝑎, 𝑏, 𝑐) = 𝑎𝑏𝑐) – 0 баллов за задачу.

Ошибка.
Попробуйте повторить позже

Задача 5#33380

Даны числа log√----(4x+ 1),log    (x+ 2)2,logx  (5x− 1)
   5x−1        4x+1 2       2+2  . При каких x  два из этих чисел равны, а третье меньше их на 1  ?

Источники: Физтех - 2021, 11.5 (см. olymp.mipt.ru)

Показать ответ и решение

Из условия следует, что функции 4x+1,x +2,5x− 1
     2  положительны и не принимают значения 1  при всех x  из области допустимых значений. Пусть      √----               (x  )2
a= log 5x−1(4x+ 1),b= log4x+1 2 + 2 ,c=  logx2+2(5x− 1)  . Тогда

        ----            (x   )2
abc= log√5x− 1(4x+ 1)⋅log4x+1 2 +2  ⋅logx2+2(5x− 1)=

                      (x   )  log   (5x− 1)
= 2log5x−1(4x+ 1)⋅2 log4x+1 -2 + 2 ⋅log4x+1(x-+2)-=4.
                                4x+1  2

По условию числа (a;b;c)  удовлетворяют одному из трёх условий:

I) a= b   a= c+1
II) b= c   c= a+1

III)c= a   a= b+ 1.

Рассмотрим случай I  . Подставляя b= a  и c =a − 1  в полученное выше уравнение abc= 4  , имеем a⋅a⋅(a − 1)= 4  , откуда  3   2           ( 2     )
a − a − 4=0,(a− 2) a + a+2 = 0  . Так как многочлен  2
a +a +2  не имеет корней, то единственным решением уравнения является a =2  , поэтому системе удовлетворяет тройка чисел a =2,b= 2,c= 1  . Случаи II  и III  рассматриваются аналогично с точностью до смены обозначений (выражение abc  симметрично). Из них получаем, что либо a =1,b= 2,c= 2  , либо a= 2,b =1,c= 2  . Теперь для каждой из полученных троек чисел (a;b;c)  найдём x  .

Если c= 1  , то       x
5x − 1 =2 +2  , то есть    2
x= 3  . Поэтому         11
a= 2log733-⁄= 2  , то есть значений x  , при которых a= b= 2,c= 1  , не существует.

Если a= 1  , то       √ -----
4x +1 =  5x− 1  . Возводя обе части последнего уравнения в квадрат, получаем уравнение 16x2+ 3x+ 2= 0  , которое не имеет корней, поэтому случай a =1,b= c= 2  также не подходит.

Если b= 1  , то (    )2
 x2 + 2 =4x+ 1  . Это уравнение эквивалентно уравнению x2− 8x+ 12 =0  , корнями которого являются x= 2  и x =6  , но x = 6  не подходит, так как в этом случае a= log√2925⁄= 2  . Значение x= 2  подходит: a= log√99 =2,c= log39= 2  .

Итак, x =2  — единственное решение задачи.

Ответ:

 2

Критерии оценки

при решении перемножением логарифмов: показано, что произведение всех логарифмов равно целому числу – 1 балл;

получено и решено кубическое уравнение относительно одного из логарифмов – 1 балл;

за рассмотрение каждого из случаев – по 1 баллу;

если при этом в случае приобретены лишние корни, он не считается рассмотренным, и за него ставится 0 баллов.

при решении рассмотрением трёх случаев равенств логарифмов: разобран 1 случай – 1 балл,

разобраны 2 случая – 3 балла,

разобраны 3 случая – 5 баллов;

если при этом в случае приобретены лишние корни, он не считается рассмотренным, и за него ставится 0 баллов.

Ошибка.
Попробуйте повторить позже

Задача 6#33396

Остроугольный треугольник ABC  вписан в окружность ω  с центром О. Окружность, проходящая через точки A,O  и C  , пересекает отрезок BC  в точке P  . Касательные к ω  , проведённые через точки A  и C  , пересекаются в точке T  . Отрезок TP  пересекает сторону AC  в точке K  . Известно, что площади треугольников AP K  и CP K  равны соответственно 6  и 4  .

а) Найдите площадь треугольника ABC  .

б) Пусть дополнительно известно, что            7
∠ABC = arctg 5  . Найдите AC  .

Источники: Физтех - 2021, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

a) Так как прямые TC  и TA  - касательные к ω  , они перпендикулярны радиусам, проведённым в точки касания, и ∠OCT  =∠OAT = 90∘ . Отсюда следует, что точки A  и C  лежат на окружности с диаметром OT  (назовём эту окружность Ω  ). На этой же окружности лежит точка P  , поскольку она лежит на окружности, проходящей через точки A,O,C  . Обозначим ∠ABC = β  . Тогда по свойству угла между хордой и касательной получаем, что ∠TAC = β  . Далее, ∠T PC =∠T AC =β  (углы, вписанные в окружность Ω  ). Из того, что ∠TPC = ∠ABC  , следует, что AB ∥PT  .

Так как у треугольников APK  и CPK  общая высота, проведённая из вершины P  , их площади относятся как основания, т.е. CK :AK = S△CPK :S△APK = 4:6 =2 :3  . Треугольники ABC  и KP C  подобны, поскольку PK ∥AB  , и коэффициент подобия k  равен CAKC= AK+CKKC- = 1+ ACKK-= 52  . Но тогда SABC =  k2⋅S△CPK = (52)2⋅4= 25

б) Поскольку ∠ABC  острый, то ∠AOC = 2∠ABC = 2β  (центральный угол вдвое больше вписанного), ∠AP C =∠AOC  =2β  (вписанные в Ω  углы, опирающиеся на одну дугу). Следовательно, PK− биссектриса треугольника ACP  (также можно заметить, что ∠T PA= ∠TCA = ∠ABC = β  , как вписанные и как угол между касательной и хордой соответственно). Биссектриса треугольника делит противоположную сторону пропорционально двум другим сторонам, поэтому CP :AP = CK :AK = 2:3  . Пусть CP = 2y  ; тогда AP = 3y

Из дополнительного условия β = arctg 7
       5  . Следовательно,

      cos2β  cos2 β− sin2β  1− tg2β   1− (7)2   12
cos2β =--1--= cos2-β+-sin2β = 1+-tg2β-= 1+-(57)2 = −37
                  ∘(-----)-(-----)  ∘ -5---
sin2β = ∘1-− cos22β = 1 + 12 1− 12 =   49⋅25= 35.
                       37      37      372   37

Площадь треугольника ACP  равна 1              1       35-  105-2
2 ⋅CP ⋅AP sin2β = 2 ⋅2y⋅3y ⋅37 = 37 y  , откуда получаем 105y2
 37 = 10  ,  2  74-
y = 21  . По теореме косинусов из треугольника APC  находим, что AC2 = (2y)2+ (3y)2− 2 ⋅2y⋅3y⋅cos2β =           12  625y2   625⋅74
13y2+ 12y2⋅37 =--37- = 37⋅21  , откуда окончательно получаем      25√2
AC = -√21-  .

Ответ:

 a)25, b)2√5√2
        21

Критерии оценки

Решён пункт а) – 4 балла;

частичные продвижения за пункт а):

доказано, что 𝑃𝐾 ‖ 𝐴𝐵 – 2 балла;

доказано, что четырёхугольник 𝐴𝑂𝐶𝑇 вписанный – 1 балл (не суммируется с вышеуказанными 2 баллами).

Решён пункт б) – 3 балла;

частичные продвижения за пункт б):

доказано, что 𝑃𝐾 – биссектриса треугольника 𝐴𝑃 𝐶 – 1 балл.

Ошибка.
Попробуйте повторить позже

Задача 7#34200

Решите уравнение

∘ ---4----------------
  8sin x− 6sin4x− 4sin2x= 2sin 2x.

Источники: Физтех - 2021, аннулированный из-за технических проблем вариант

Показать ответ и решение

Учтём, что sin 2x ≥0  и возведём в квадрат, применяя формулы двойных углов, получим

   4              2     2                  2   2
8sin x− 24sinxcosx(cosx − sin x)− 8sinxcosx= 16sin xcosx

Заметим, что cosx= 0  не является решением и поделим на cos4x

   4             3            2        2
8tg x− 24tg x+24tg x− 8tg x⋅(1+ tg x) =16tg x

tgx⋅(tg3x+ 2tg2x− 2tgx − 4)= 0

tgx(tg x+2)(tg2x− 2)= 0

В итоге        √-
tgx∈ {±  2;−2;0} , после проверки sin 2x ≥0  останутся только 0  и √-
 2  .

Ответ:

 πn;arctg√2+ πn; n ∈ℤ

Ошибка.
Попробуйте повторить позже

Задача 8#100783

Дан квадрат, стороны которого равны 500.  Его стороны разбиты отмеченными точками на отрезки длины 2  (вершины исходного квадрата тоже отмечены). Найдите количество четвёрок из отмеченных точек, являющихся вершинами прямоугольника.

Источники: Физтех - 2021, аннулированный из-за технических проблем вариант

Показать ответ и решение

Посчитаем число отрезков, на которые разбили квадрат: 500-=250,
2  тогда число точек равно 251.

Если фиксируем две точки на одной стороне квадрата, то две другие точки будут лежать на противоположной стороне, и прямоугольник будет определяться однозначно.

Рассмотрим случай, когда фиксируются две точки на соседних сторонах. Определим, когда в этом случае образуется прямоугольник:

Пусть сторона прямоугольника образует с квадратом угол α.  Тогда получаем четыре подобных прямоугольных треугольника с гипотенузами, являющимися сторонами прямоугольника, причём противоположные треугольники равны. Их острые углы равны α  и   ∘
90 − α.

Обозначим катеты одного из треугольников за x  и y.  Тогда треугольники подобны с коэффициентом x
y .

Рассмотрим два соседних треугольника. Если у одного из них катет равен x,  то у другого катет равен 500 − x.

Из подобия найдём вторую сторону:

(500− x)⋅ x
        y

Из равенства противоположных треугольников получаем уравнение:

500= (500− x)⋅ x+ y
             y

Откуда:

(x − y)(500− x− y)=0

Следовательно, либо x= y,  либо x +y =500.

Теперь посчитаем все случаи:

1. Если фиксируем две точки на одной стороне, то точки можно выбрать на вертикальной и горизонтальной сторонах квадрата. При этом сам квадрат мы посчитали дважды. Общее количество таких прямоугольников:

251⋅250-⋅2− 1
   2

2. Если фиксируем точки на соседних сторонах квадрата, первую точку (без учёта вершин квадрата) можно выбрать 249  способами. Тогда вторую точку можно выбрать двумя способами: либо x= y,  либо x +y =500.  Учтём также, что случай x = y
    2  был посчитан дважды:

249 ⋅2 − 1

Сложив оба случая, получаем:

251⋅250⋅2− 1+249⋅2− 1= 63246
   2
Ответ:

63246

Ошибка.
Попробуйте повторить позже

Задача 9#104428

Диагонали выпуклого четырёхугольника ABCD  пересекаются в точке O,  и при этом треугольники BOC  и AOD  — правильные. Точка T  симметрична точке O  относительно середины стороны CD.  Докажите, что ABT  — правильный треугольник.

Источники: Физтех 2021, 16.6 (olymp-online.mipt.ru)

Показать доказательство

PIC

Несложно показать, что ABCD  — равнобедренная трапеция, поэтому вокруг неё можно описать окружность (назовём её Ω)  . Диагонали четырёхугольника CODT  точкой пересечения делятся пополам, поэтому он параллелограмм, и при этом

∠CT D =∠COD  = 180∘− ∠AOD = 120∘.

Поскольку ∠CAD = 60∘ , в четырёхугольнике CADT  сумма противоположных углов равна 180∘ , и вокруг него также можно описать окружность. Следовательно, все 5 точек A,B,C,T,D  лежат на окружности Ω  . Углы ATB  и ACB  вписаны в Ω  и опираются на одну дугу, поэтому они равны, и ∠AT B = 60∘ . Далее отметим, что

∠DBT = ∠DCT (вписанные, опираются на одну дугу) ,
    ∠DCT = ∠BDC  (за счёт того, что BD ∥CT),
     ∠BDC  =∠BAC  (трапеция равнобокая).

Отсюда следует, что

∠ABT  =∠ABD  +∠DBT  =∠ABD  +∠BAC  =180∘− ∠AOB = 60∘.

Итак, доказано, что в треугольнике ABT  два угла равны 60∘ , поэтому он равносторонний.

Рулетка
Вы можете получить скидку в рулетке!