Тема Физтех и вступительные по математике в МФТИ

Физтех - задания по годам .17 Физтех 2025

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Разделы подтемы Физтех - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#107194

Положительные числа x  и y  таковы, что значение выражения

    1  1   2-
K = x +y + xy

не изменяется, если x  уменьшить на 1 , а y  — увеличить на 1. Найдите все возможные значения выражения

M  =x3− y3− 3xy.

Источники: Физтех - 2025, 11.2 (см. olymp-online.mipt.ru)

Показать ответ и решение

Из условия следует, что выполняется равенство

1  1   2    1      1        2
x + y + xy-= x−-1 + y+-1 + (x−-1)(y+-1)

Преобразуя, получаем:

(        )  (        )   (               )
  -1--− 1 +  --1- − 1 + 2 -----1---- − 1- = 0
  x− 1  x    y +1   y     (x− 1)(y+ 1)  xy

---1-- − --1---+ 2⋅--y-− x-+1--
x(x− 1)  y(y+ 1)    xy(x − 1)(y+ 1)

y(y +1)− x(x− 1)+2(y− x+ 1) =0

(y+ x+ 2)(y− x +1)= 0

Так как x  и y  — положительные числа, первый множитель положителен, поэтому второй множитель равен нулю, т.е. x =y +1  . Значит,

x3− y3 − 3xy = (y +1)3− y3 − 3y(y +1)= 1.
Ответ: 1

Ошибка.
Попробуйте повторить позже

Задача 2#107195

Найдите все тройки натуральных чисел (A;B;C)  такие, что:

- A  — четырёхзначное число, составленное из одинаковых цифр,

- B  — трёхзначное число, хотя бы одна из цифр которого равна 2,

- C  — двузначное число, хотя бы одна из цифр которого равна 3,

- произведение A ⋅B ⋅C  является квадратом некоторого натурального числа.

Источники: Физтех - 2025, 11.1 (см. olymp-online.mipt.ru)

Показать ответ и решение

Заметим, что число A  представляется в виде xxxx= x⋅11⋅101  . В произведении ABC  множители 11 и 101 встречаются чётное число раз. Таким образом, трёхзначное число B  должно быть кратно 101, а двузначное число C  — кратно 11. В силу условий B =202,C = 33  . Следовательно,

                           2    2
ABC = x⋅11⋅101 ⋅202⋅33= 2⋅3⋅11 ⋅101 ⋅x.

Отсюда x= 6  .

Ответ:

 (6666,202,33)

Ошибка.
Попробуйте повторить позже

Задача 3#107199

а) Найдите все пары действительных чисел (x;y)  такие, что

(sinπx+ sinπy)sinπx= (cosπx+ cosπy)cosπx.

б) Сколько пар целых чисел (x,y)  удовлетворяют одновременно этому уравнению и неравенству

     x       y  3π
arcsin 5 + arccos4 < 2 ?

Источники: Физтех - 2025, 11.3 (см. olymp-online.mipt.ru)

Показать ответ и решение

Уравнение системы равносильно каждому из следующих:

                            πx − πy  3πx+ πy
cos(2πx)= − cos(π(x+ y)) ⇔   2cos---2-- cos---2---= 0,

откуда π        π
2(y− x)= 2 + πk,k∈ℤ  или π        π
2(3x+ y)= 2 + πm,m ∈ℤ  .

Уравнению удовлетворяют все такие (x,y)  , что либо y =1 +x+ 2k  , либо y = 1− 3x +2m  , где k  и m  — целые. Заметим, что для целых x,y  все точки, описываемые равенством y = 1− 3x +2m,m ∈ ℤ  , уже встречаются среди точек вида y =1+ x+ 2k,k ∈ℤ  (достаточно взять k =m − x)  .

Рассмотрим теперь неравенство системы. По определению функций arcsint  и arccost  сумма arcsinx5+  + arccosy4  всегда лежит в [     ]
− π2,3π2- , поэтому неравенство задаёт ограничения x ∈[−5,5],y ∈ [− 4,4]  (из областей определения арккосинуса и арксинуса), а также (x,y)⁄= (5,− 4)  (в этой точке неравенство обращается в равенство).

Итак, остаётся подсчитать количество точек внутри прямоугольника − 5≤ x≤ 5,− 4≤ y ≤ 4  без угловой точки (x,y)= (5,− 4)  , лежащих на прямых y = x+ 1+ 2k,k ∈ℤ  . Несложно видеть, что при чётных x  в прямоугольник попадает по 4 точки, а при нечётных    x  — по 5 точек, за исключением x =5  . Тогда получаем суммарно 5 ×5+ 4× 6= 49  точек.

Ответ:

а) y =1+ x+ 2k  , где k∈ℤ,x ∈ℝ;

y = 1− 3x+ 2m  , где m ∈ ℤ,x ∈ℝ

б) 49

Ошибка.
Попробуйте повторить позже

Задача 4#107200

В начале месяца было выделено 4 билета на праздничный концерт, которые планировалось случайным образом распределить между одиннадцатиклассниками. В конце месяца выяснилось, что будет выделено больше 4 билетов. Одиннадцатиклассники Петя и Вася вычислили, что вероятность им обоим вместе попасть на концерт в начале месяца была в 2,5 раза меньше, чем оказалась в конце месяца. Сколько всего было выделено билетов на концерт в конце месяца, если количество одиннадцатиклассников не изменилось?

Источники: Физтех - 2025, 11.4 (см. olymp-online.mipt.ru)

Показать ответ и решение

Пусть всего одиннадцатиклассников N  человек, а в конце месяца будет выделено m >4  билетов. Количество способов распределить 4 билета между учениками в начале месяца равно  4
CN  , а количество способов распределения билетов, когда Петя и Вася попадают на концерт, равно  2
CN−2  (Петя и Вася получают билеты, а ещё два билета распределяются между оставшимися N − 2  учениками). Значит, вероятность обоим ученикам попасть на концерт в начале месяца была равна

C2
-NC−42-= (N-−2!(N2)!−4!(N4)!−N!4)!= N-(N12−-1)
  N

Аналогично получаем, что вероятность, что Петя и Коля оба попадут на концерт в конце месяца, равна

CmN−−22  (N − 2)!(N − m)!m! m(m − 1)
-CmN--= (m−-2)!(N −-m)!N! = N(N-−-1)

Следовательно, вероятность увеличилась в m-⋅(m12−1)  раз (эта величина не зависит от N  ). Отсюда получаем, что

m-⋅(m-− 1)= 5
   12     2

Это уравнение имеет единственный положительный корень m= 6  .

Ответ: 6

Ошибка.
Попробуйте повторить позже

Задача 5#107201

Точка O  — центр окружности ω
 1  , описанной около остроугольного треугольника ABC  . Окружность ω
 2  , описанная около треугольника BOC  , пересекает отрезок AB  в точке P  . Найдите площадь треугольника ABC  , если      15
AP = 2 ,BP = 5,AC =9.

Источники: Физтех - 2025, 11.5 (см. olymp-online.mipt.ru)

Показать ответ и решение

Углы BAC  и BOC  — это центральный и вписанный углы для окружности ω
 1  , опирающиеся на дугу BC  . Значит, ∠BOC = 2∠BAC  . Кроме того, углы BOC  и BPC  вписаны в окружность ω2  и опираются на одну и ту же дугу, поэтому они равны между собой.

PIC

Пусть ∠BAC = α  . Тогда ∠BOC = 2α,∠BP C = ∠BOC =  = 2α  , а по теореме о внешнем угле треугольника ∠ACP  =∠BP C − ∠BAC = α  . Следовательно, треугольник ACP  равнобедренный, CP = AP = 125  . Из этого треугольника находим, что

      √----------
sin α= -4AP-2− AC2-= 4,
          2AP       5

и тогда

       1            1  25-   4
SABC = 2AB ⋅ACsinα= 2 ⋅2 ⋅9⋅5 = 45
Ответ: 45

Ошибка.
Попробуйте повторить позже

Задача 6#107202

На координатной плоскости изображена фигура Φ(α)  , состоящая из всех точек, координаты ( x;y  ) которых удовлетворяют системе неравенств

{     √-         √-
  (x2− 322 sinα)(y− 3 2cosα)≤0
  x + y ≤25

Найдите максимальное значение M  периметра (длины границы) фигуры Φ(α)  и укажите все значения α  , при которых оно достигается.

Источники: Физтех - 2025, 11.6 (см. olymp-online.mipt.ru)

Показать ответ и решение

PIC

Φ(α)  — это две части круга ω  с центром в точке O(0;0)  и радиуса R = 5  , отсекаемые хордами AB  и CD  , лежащими на прямых с уравнениями     √ -
x =3  2sinα  и     √-
y = 3 2cosα  соответственно. Хорды пересекаются в точке    √ -     √-
N (3 2sinα;3 2cosα )  , которая принадлежит ω  , так как         √-        √ -
|ON |2 = (3 2sinα)2+ (3 2cosα)2 = 18 <25 =R2  . Эта точка N  является единственной общей точкой двух частей Φ(α)  .

Периметр Φ (α)  равен Σ1+ Σ2  , где Σ1  — сумма длин дуг AC  и BD,Σ2  — сумма длин хорд AB  и CD  . Угол между AB  и  CD  равен π2  , поэтому

Σ1 = 2⋅ π⋅R = 5π
      2

Расстояния от точки O  до AB  и CD  равны ρ1 =|3√2sinα| и ρ2 = |3√2cosα| соответственно, поэтому, используя неравенство      ∘ -----
a+2b ≤  a2+2b2  о среднем квадратическом и среднем арифметическом, получаем

     ∘R2-− ρ2+ ∘R2-−-ρ2 ∘ --2----√-----2---√------2
Σ24 = ------12-------2-≤  2R-−-(3-2sinα)2-−-(3-2-cosα)-= 4.

Равенство достигается при

∘R2-−-ρ2-=∘R2-−-ρ2  ⇔  ρ1 = ρ2 ⇔   |sin α|= |cosα|  ⇔   |tgα|= 1  ⇔  α = π+ πn,n∈ ℤ
      1         1                                                  4   2

Тогда Σ2 = 16  , а M = max(Σ1 +Σ2)= 5π+ 16  .

Ответ:

 5π+ 16 при α = π+ πn, где n ∈ℤ
             4   2

Ошибка.
Попробуйте повторить позже

Задача 7#107203

Шар Ω  касается всех рёбер правильной усечённой пирамиды, а шар ω  касается всех её граней. Пусть сторона верхнего основания меньше, чем сторона нижнего. Найдите отношение площади боковой поверхности пирамиды к площади её нижнего основания.

Источники: Физтех - 2025, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Пусть A A  ...A
 1 2    n  — нижнее, а B B ...B
 1 2    n  -— верхнее основание данной усечённой пирамиды; O  и O
  1  — центры этих оснований (соответственно); M  и M1  — середины рёбер A1A2  и B1B2  (соответственно). Из теоремы о равенстве отрезков касательных, проведённых к шару из одной точки, следует, что

MM1 = MO + M1O1

и

                              π                 π
A1B1 = A1M + B1M1; MO = A1M ctgn , M1O1 =B1M1 ctg n

следовательно,

                    π         π
MM1 = (A1M +B1M )ctg n = A1B1ctgn

Но MM1  <A1B1  , то есть

ctg π< 1⇒  π> π ⇒ n< 4
   n      n  4

Поэтому данная в условии усечённая пирамида треугольная. Обозначим длину ребра нижнего основания через a  , верхнего — через   b  . Так как шар Ω  касается всех рёбер пирамиды, её боковая грань A A B B
 1 2 2 1  — описанная равнобокая трапеция с основаниями a  и b  .

PIC

Радиус вписанной окружности найдем из прямоугольного треугольника A1QB1  :

QT 2 = A1T ⋅B1T =A1M ⋅B1M1 = ab
                           4

QT = 1√ab
    2  , следовательно, MM1 = √ab  . Но

MM  = MO  +M  O = -a√-+ -b√- ,
   1         1 1  2 3  2 3

поэтому

a+ b  √--
2√3-=  ab.

Имеем (a+b)2 = 12ab  , откуда        √-
ba = 5− 2 6= 5+12√6(  так как a> b)  . Значит,

  Sбок     3⋅ a+b-⋅MM1  2√3(2√3ab)√ab    b        √-
SA1A2A3 = --(2a2√3)---= -----a2----- =12a =60− 24 6
              4
Ответ:

 60− 24√6

Ошибка.
Попробуйте повторить позже

Задача 8#111331

Сколькими способами можно представить число n= 2401 ⋅3500  в виде произведения двух натуральных чисел x  и y,  где y  делится на x?

Источники: Физтех 2025 11.2 (olymp-online.mipt.ru)

Показать ответ и решение

Заметим, что делитель числа n  не может иметь простые множители кроме 2 и 3, так как само n  имеет только эти простые числа в своем каноническом разложении. Отсюда любой делитель n  имеет вид  a b
2 3,  где a,b∈ ℤ  и 0≤ a≤401,0≤ b≤500.

Тогда y  так же имеет вид    a b
y = 23  с аналогичными условиями на a  и b.  Отсюда

   n   24013500   401−a 500−b
x= y = -2a3b--=2    3

Рассмотрим отношение чисел y  и x:

        a b
y = -4012−a3500−b = 22a−40132b−500
x   2    3

Получившееся число является целым, так как y  делится на x  по условию. Это значит, что 2a− 401≥ 0  и 2b− 500≥ 0,  то есть a ≥201  и b≥250.

Таким образом, у нас есть 401 − 201+ 1= 201  способ выбрать число a,  на каждый из которых есть 500− 250+1 =251  способ выбрать число b,  откуда количество способов выбрать пару a  и b  равно 201⋅251= 50451.  При этом каждая такая пара задаёт разложение числа n  на множители x  и y,  где y  делится на x,  поэтому 50451  и будет ответом.

Ответ:

50451

Рулетка
Вы можете получить скидку в рулетке!