Всесиб - задания по годам → .10 Всесиб 2024
Ошибка.
Попробуйте повторить позже
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Источники:
Последними цифрами простых чисел могут быть только . Значит, использовав каждую из десяти цифр от
до
по одному
разу, больше шести простых чисел мы получить не сможем.
6 простых чисел уже может быть:
Ошибка.
Попробуйте повторить позже
Найти все множества , состоящие из различных натуральных чисел от 1 до 50 такие, что: 1) X содержит не все числа от 1 до 50, но не
меньше трёх из них, 2) X содержит числа 1 и 50, 3) для любых трёх чисел
из X число
также принадлежит
X.
Источники:
Отсортируем числа из множества по возрастанию:
Для любых трех последовательных чисел число
по условию лежит в
. Но
Тогда это число должно равняться , откуда
. В силу произвольности выбора номера
получаем, что каждое
число является средним арифметическим двух его соседей, но тогда это арифметическая прогрессия.
По условию числа , то есть
, где
- разность прогрессии.
и в силу того, что
, а
натуральное. Имеем единственное решение
.
Ошибка.
Попробуйте повторить позже
Пусть длины сторон треугольника являются натуральными числами , и одна из его высот равна сумме двух других. Доказать, что
число
является точным квадратом (натурального числа).
Источники:
Пусть — площадь треугольника, а
— высоты к сторонам
соответственно.
Из формулы площади треугольника имеем, что
Без ограничения общности будем считать, что . Тогда
Откуда . Но тогда
и можно сказать, что
Ошибка.
Попробуйте повторить позже
Биссектриса угла параллелограмма
пересекает сторону
и продолжение стороны
за точку
в точках
и
соответственно, как показано на рисунке:
Доказать, что центр описанной окружности треугольника лежит на описанной окружности треугольника
.
Источники:
Так как — биссектриса, то
. В силу параллельности
и
также
.
Пусть — центр окружности, описанной около
. Тогда
, так как
— равнобедренный треугольник. Откуда
.
Также равнобедренными будут треугольники (
как радиусы) и
(углы
и
равны по
вышесказанному). Значит,
Тогда по двум сторонам и углу между ними, потому что
, радиусы
, а углы
Следовательно, и тогда точки
лежат на одной окружности.
Ошибка.
Попробуйте повторить позже
У вредного Васи есть клетчатая полоска длины 13 клеток и лента длины клеток, каждая шириной в одну клетку. Вася хочет
разрезать полоску на кусочки произвольной длины из нескольких целых клеток по своему усмотрению, а затем уложить часть из них на
ленту в некотором порядке так, чтобы в какой-то момент осталось не менее одного кусочка, ни один из которых уложить уже нельзя. При
этом кусочки укладываются строго по клеткам и не могут выходить за пределы ленты, ни одна клетка не должна быть накрыта ими
дважды и, если на ленте есть место, куда можно уложить очередной кусочек, Вася должен уложить его в одно из таких мест по своему
выбору. При каком минимальном N, как бы Вася ни старался, ему не удастся задуманное, то есть придётся уложить все
кусочки?
Источники:
Заметим, что если в какой-то ход Васи осталось больше одного кусочка, а оставшиеся поместить нельзя, то можно рассмотреть разрезание, где все эти кусочки объединяются в один, а другие выкладываются на ленту тем же образом. Понятно, что такой кусок-склейка также не будет помещаться.
Значит, можно без ограничения общности предположить, что у Васи должен остаться ровно один кусок, который нельзя
поместить. Пусть его длина , а количество положенных кусочков равно
. Тогда
, при этом длина полосы
, так как
- количество клеточек занятых остальными кусочками, а
- количество ’зазоров’, в
которые теоретически мы могли поместить кусок длины
, но он не поместился, так как размеры зазоров не превосходят
.
Тогда Вася достигает своей цели при
То есть если , то Вася не сможет выполнить задуманное.
А при Васе достаточно разрезать полоску на
кусков размера
и
кусок размера
, при этом расположить
кусков
размера
он должен на расстояний не более
клеток друг от друга и от концов. (Чего он сможет достичь, так как
)