Всесиб - задания по годам → .09 Всесиб 2023
Готовиться с нами - ЛЕГКО!
Ошибка.
Попробуйте повторить позже
В треугольнике биссектрисы углов
и
пересекают стороны
и
в точках
и
соответственно. Известно,
что длина стороны
равна сумме длин отрезков
и
Найдите величину угла
Источники:
Подсказка 1
Раз у нас есть условие на то, что сторона AC равна сумме отрезок, то давайте разобьем нашу сторону как раз на две части, каждая из которых будет равна одному из отрезков в условии) Причем т.к. у нас тут биссектрисы, то удобно будет сделать так, чтобы равные отрезки прилегали к одной вершине. Разделим так нашу сторону точкой D. Что можно заметить на картинке теперь?
Подсказка 2
Пусть биссектрисы пересекаются в точке I. Тогда треугольники API и ADI равны! Тоже можно сказать про ICK и IDC. А дальше остается просто счет уголков)
Первое решение (счетное).
Давайте будет пользоваться свойством биссектрисы:
Тогда:
Теперь подставим это в
Домножим на знаменатели:
Тогда из теоремы косинусов для треугольника следует, что
Отсюда получаем ответ.
Второе решение (более идейное).
Отметим точку на отрезке
такую что
Тогда из условия следует, что
Заметим, что треугольники
равны по двум сторонам и углу между ними. Аналогично равны треугольники
Из этого следует:
Теперь воспользуемся тем, что
Тогда по теореме о сумме углов:
Ошибка.
Попробуйте повторить позже
Тройка действительных чисел такова, что
и
Найти значение выражения
Источники:
Подсказка 1
Мы знаем, что в формуле разности косинусов есть произведение синусов и произведение косинусов...А у нас есть условие на суммы синусов и суммы косинусов..Что можно сделать с ними?
Подсказка 2
Возвести в квадрат! В одном выражении будут все попарные произведения синусов, а в другом - косинусов. И тогда остается свернуть эти два выражения в нужное нам)
Возведём в квадрат каждое из двух уравнений:
Сложим эти уравнения, используя Получим:
Ошибка.
Попробуйте повторить позже
Найти все решения системы уравнений в действительных числах:
Источники:
Подсказка 1
Давайте внимательно посмотрим на нашу систему, что можно сказать о ней? Верно, уравнения в ней циклические! Поэтому можно упорядочить наши переменные, не умаляя общности: x ≥ y ≥ z.
Подсказка 2
Вычтем из первого уравнения третье: x⁵-z⁵ = y³+2z-x³-2y. Заметим, что левая часть уравнения всегда неотрицательна, а правая не больше нуля! Какой вывод можно сделать из этого?
-—
Подсказка 3
Верно, все три наших переменных попарно равны! Осталось решить уравнение x⁵= x³+2x. Поскольку в каждом слагаемом есть x, то x=0 — корень! Дальше нужно решить биквадратное уравнение!
Первое решение.
Если тройка является решением, то решениями являются
. В силу этой цикличности системы мы можем не
умаляя общности считать
наибольшим.
Вычтем из первого уравнения второе и третье:
Если то
поэтому должно достигаться равенство
Если то
поэтому должно достигаться равенство
Таким образом, система может иметь решение только при При подстановке в любое из уравнений системы
получаем
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Заметим, что в любой тройке, являющейся решением, все переменные одного знака: они либо все неотрицательны, либо все
неположительны. Это следует из того, что нечётная степень числа имеет тот же знак, что и само число. Действительно, среди переменных
две имеют одинаковый знак, тогда правая часть уравнения, содержащего эти переменные, имеет тот же знак, значит и левая часть, а с ней и
третья переменная имеют тот же знак. Кроме того, если одна из переменных равна то левая часть соответствующего
уравнения равна
значит сумма двух чисел одного знака в правой части тоже равна
поэтому каждое из этих чисел равно
Внесём эту тройку в ответ. Тогда дальше можно считать, что все переменные не равны При умножении решения системы на
снова получаем решение, следовательно, дальше можно считать, что
а потом внести в ответ тройку с противоположными
знаками.
Сложим все три уравнения и перенесем правую часть в левую:
Теперь рассмотрим функцию Нетрудно понять, что при
значении
функции отрицательно, а при
положительно, а также при
оно равно
Отсюда следует, что все
переменные не могут быть одновременно больше или одновременно меньше
Так как иначе
ведь в
левой части стоит сумма трёх чисел одного знака, поэтому они все должны равняться
откуда следует, что при этом
Итак, остались два случая, и
Если тогда
— это не решение.
Если — это тоже не решение.
Таким образом доказано, что других решений, кроме уже найденных, нет.
Ошибка.
Попробуйте повторить позже
В возрастающей арифметической прогрессии из натуральных чисел каждый член, кроме последнего, делится на свой номер в прогрессии,
а последний – нет. Докажите, что
является степенью некоторого простого числа.
Источники:
Подсказка 1
Давайте посмотрим на наше условие о том, что все числа с номерами меньше n делятся на свой номер. Эти числа будут вида a+(k-1)d, и если посмотреть по модулю k, то это будет сравнимо с a-d = 0 (mod k). Какое противоречие можно найти, если n (кол-во чисел в прогрессии) - не степень простого?
Подсказка 2
По факту мы поняли что a-d делится на все k<n. А что можно найти у числа, которое не является степенью простого?
Подсказка 3
Делители, которые являются взаимно простыми! Поймите, как это применить, зная что a-d делится на все k<d.
Пусть первый член прогрессии равен а разность равна
Тогда из условия
По условию
ый член последовательности
делится на
(кроме последнего), тогда получим:
Значит, делится на все числа от
до
Пусть
не является степенью простого числа, тогда
где
и
не
имеют общих делителей. Тогда
Значит, так как то
То есть последний член делится на
Противоречие.
Ошибка.
Попробуйте повторить позже
На одной стороне каждой из 100 карточек написали одно из натуральных чисел от 1 до 100 включительно (каждое число записано ровно на одной карточке), после чего перевернули их обратными сторонами вверх и разложили в произвольном порядке на столе. За один вопрос Вася может указать на две любые карточки, после чего получает от ведущего ответ, являются ли записанные на них числа соседними (отличающимися на 1). За какое минимальное число вопросов Вася может гарантированно назвать хотя бы одну пару карточек, на которых написаны соседние числа?
Источники:
Подсказка 1
Поймём, что эта задача на оценку + пример! Чтобы придумать пример, подумайте о том, сколько соседей у каждого числа от 1 до 100.
Подсказка 2
Да, у каждого числа от 2 до 99 включительно — два соседа, а у чисел 1 и 100 — один сосед! Тогда можно увидеть алгоритм: задавать вопросы про одну и ту же карточку, постоянно меняю другую карточку. Какой ответ даёт этот алгоритм?
Подсказка 3
Верно, при таких действиях за 98 вопросов мы точно сможем назвать соседние числа! Осталось доказать, что за меньшее число вопросов доказать нельзя. Для этого нужно подумать о задаче в терминах теории графов. Тогда карточки — это вершины, а вопросы — это ребра! Что нужно найти в графе, чтобы доказать, что 98 — искомый ответ на задачу?
Подсказка 4
Да, надо найти Гамильтонов путь (такой путь, в котором каждая вершина встречается ровно один раз) по всем вершинам в графе, в котором ни одно ребро не является ребром, которое появилось вследствие вопроса Васи! Попробуйте посмотреть на задачу при малых n и доказать это утверждение по индукции!
Подсказка 5
База индукция тривиальна, поэтому давайте сразу подумаем о переходе! Такс, а что если посмотреть на вершину из которой выходит ровно одно ребро? А что будет в графе без неё? Можно ли в нём построить нужный нам путь?
Подсказка 6
Да. если есть такая вершина, то задача легко решается по индукции, ведь мы всегда можем переходить от случая с n вершинами к n+1 вершине с помощью добавления одного нужного нам ребра! Но вот незадача: что если нет вершин, из которых ихходит ровно одно ребро?
Подсказка 7
А если нет вершин с степенью 1, то можно точно утверждать, что есть хотя бы две вершины со степенью 0. Остаётся посмотреть на две этих вершин и еще одну вершину степень которой хотя бы 2!
Пример. Пусть Вася выберет какую-то карточку и задаст
вопросов, в каждом из которых он спросит про
и одну из
карточек, отличных от
Общее количество чисел, не соседних с числом, написанным на
не превосходит
если на
написано
или
и
если на
написаны числа от
до
Тогда либо в одном из
ответов будет дан
положительный ответ, и Вася нашёл нужную пару соседних чисел, либо все эти карточки содержат числа, не соседние с числом на
Следовательно, оставшаяся карточка содержит число, соседнее с числом на
Таким образом, Васе достаточно
вопросов.
Оценка. Докажем, что, если Вася задаст всего любых вопросов, он может не найти ни одной пары карточек с соседними числами.
Предположим противное, что задав некоторые
вопросов он смог точно указать на пару карточек с соседними числами. Переведём
задачу на язык теории графов. Карточки будем считать вершинами графа
а заданные Васей вопросы – рёбрами
(синими рёбрами),
соединяющими соответствующие пары карточек. К этим рёбрам нужно добавить ещё одно, соответствующее той паре карточек, на которых
написана пара соседних, по версии Васи, чисел. Теперь нужно доказать, что вершины
могут быть занумерованы в таком порядке, что ни
одно ребро не соединяет две вершины с соседними номерами. То есть, нужно дорисовать в графе путь из
рёбер, проходящий
последовательно по всем
вершинам, и не содержащих ни одного из
«Васиного» синего ребра. Это будет означать, что Васина
догадка не верна. Назовём такой путь красным и будем строить его методом математической индукции по числу вершин графа
Предположим, что в любом графе с числом вершин в котором проведено не больше
синих рёбер, существует красный
путь
по всем вершинам, не содержащий синих рёбер. Построим красный путь в
1) Пусть в есть «крайняя» вершина
из которой выходит ровно одно ребро
В графе
полученном из
удалением
вершины
и ребра
число вершин равно
а рёбер – не больше
выполнено предположение индукции, поэтому
в
можно построить красный путь длины
с началом в вершине
и концом в вершине
Тогда ребро
не
соединяет вершину
с одной из
или
проведя красное ребро из
в эту вершину, получим красный путь длины
в
2) Пусть в нет вершин, из которых выходит ровно одно ребро. В таком случае все синие рёбра инцидентны в сумме
вершинам
степени не меньше
каждая, следовательно, среди них не больше
различных. Следовательно, в
не меньше двух вершин
из
которых не выходит ни одного синего ребра. Удалим из
вершины
и два ребра, выходящие из некоторой четвёртой вершины
(но
не саму вершину). Полученный граф
снова удовлетворяет предположению индукции и в нём можно построить красный путь длины
с началом в вершине
и концом в вершине
Если он не проходит через
или проходит, но не проходит через удалённые рёбра,
соединим
с
и
с
и получим красный путь в
длины 99. В оставшихся случаях, обозначим за
и
вторые концы удалённых
рёбер. Если красный путь в
проходит через
заменим этот фрагмент на
Если он проходит только
через одно удалённое ребро, скажем, через
заменим его на
В обоих случаях получится красный путь в
База индукции - случаи графов с 3 и 4 вершинами - очевидна.