Тема Всесиб - задания по годам

Всесиб 2021

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#30989

Найдите все действительные числа a,  для которых существуют три различных действительных числа x,y,z,  таких что

      1     1     1
a= x+ y = y+ z =z+ x

Источники: Всесиб-2021, 11.3 (см. sesc.nsu.ru)

Показать ответ и решение

Первое решение.

Из условия     1     1
x + y = y+ z  получаем

       y− z
x − y =-zy--

Аналогично (в силу цикличности равенств) y− z = z−zxx ,z− x= x−xyy .

После перемножения полученных трёх равенств имеем

(x− y)(y− z)(z− x)= (x−-y)(y−-z)(2z−-x)
                       (xyz)

С учётом того, что числа различные, получаем после сокращения на (x− y)(y− z)(z− x)⁄= 0:

(xyz)2 = 1 ⇐ ⇒ xyz = ±1

Из условия a =x + 1y = y+ 1z  получаем

a⋅a= (x + 1)⋅(y+ 1)= 1+ xy+ x+ 1-= 1+ x(y + 1+ -1-)
         y     z          z  yz          z  xyz

a2− 1= x(a ±1)

Аналогично (в силу цикличности равенств) a2 − 1= y(a±1),a2 − 1 =z(a± 1).

После перемножения полученных трёх равенств имеем

(a2− 1)3 =±1 ⋅(a± 1)3

Этому равенству не могут удовлетворять значения a,  отличные от ± 1,  поэтому других решений у задачи быть не может. Осталось проверить, подходят ли a= 1,a= −1.

При a= 1  существует удовлетворяющая условиям задачи тройка  1
(2,2,−1),  а при a =− 1  можно взять   1
(−2,−2,1).  Поэтому оба найденных значения параметра идут в ответ.

Второе решение.

Сначала постараемся избавиться от трёх неизвестных в одном выражении:

                                               2
a =x + 1=⇒ x= a− 1 = ay− 1, z = a− 1= a−-y--= a-y−-y− a
       y         y     y         x     ay− 1    ay− 1

Наконец:

a= y+ 1= y+ --ay− 1--⇐⇒ a3y− ay− a2 =a2y2− y2 − ay+ ay− 1
      z     a2y− y − a

Получаем:

(a2− 1)(y2− ay+ 1)= 0

Тогда либо a2 =1,  либо a= y+ 1y.  Последнее невозможно, ведь по условию a= x+ 1y  и получаем x= y  — противоречие с условием.

Осталось проверить a= ±1.

Зафиксируем y,  тогда из ранее полученного

x = ay− 1
      y

z = a2y−-y−-a=-−-a-
     ay− 1    ay− 1

      1         1
a =y +z = y− y + a

Все три условия выполнены и можно предъявить конкретную тройку (x,y,z),  но нами получен общий вид  ay− 1   −a
(-y-,y,ay−1)  в зависимости от y  при учёте a =±1.

Осталось проверить, что в тройке нет совпадающих чисел различность.

Допустим, что x= y.  Тогда

x = ax− 1
      x

x2− ax +1 =0

D =a2− 4= −3 <0

То есть такого быть не может. Остальные два равенства y =z  и x =z  проверяются (что они невозможны) аналогично.

Ответ:

{ − 1  ; 1  }

Ошибка.
Попробуйте повторить позже

Задача 2#31985

Пусть P  — основание высоты, опущенной из вершины A  прямоугольного треугольника ABC  на его гипотенузу BC  , a M  — середина отрезка CP  . Обозначим через E  точку на продолжении стороны AB  за точку B  такую, что AB = BE  . Докажите, что прямые EP  и AM  перпендикулярны.

Источники: Всесиб-2021, 9.3 (см. sesc.nsu.ru)

Показать ответ и решение

PIC

Удвоим AM  до точки K  и AP  до точки T ∈ EK  , тогда ∠PTK = 90∘ . Мы удвоили медиану, потому ∠KP T = ∠CAP = ∠ABC =∠AEK  в силу параллельности и прямого угла ∠BAC  . Но тогда ∠P KT +∠KEA  = 90∘ , то есть PK ⊥ AE  , но тогда P  — ортоцентр △AEK  и EP ⊥ AK  .

Ответ:

что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 3#73445

Докажите, что для любого x⁄= 0  выполнено неравенство:

 8   5  1  -1
x − x − x + x4 ≥0.

Источники: Всесиб-2021, 10.1(см. sesc.nsu.ru)

Показать доказательство

Приведём все дроби к общему знаменателю:

x12− x9− x3+1
-----x4------≥0.

Разложим числитель на множители:

(x9− 1)(x3− 1)
-----x4-----≥ 0.

Знаменатель всегда положителен, потому что это чётная степень x  . Если x< 1,  то скобки числителя отрицательны, а значит их произведение положительно. Если x ≥1,  то скобки неотрицательны, значит их произведение тоже неотрицательно. Получили требуемое.

Ошибка.
Попробуйте повторить позже

Задача 4#73447

Определим последовательность x ,x,x ,...,x
 1  2 3    100  следующим образом: пусть x
 1  произвольное положительное число, меньшее 1 , и            2
xn+1 = xn− xn  для всех n =1,2,3,...,99.  Докажите, что  3   3        3
x1+ x2+ ...+x99 < 1.

Источники: Всесиб-2021, 9.4(см. sesc.nsu.ru)

Показать доказательство

Докажем сначала, что 1> x >x  >...>x   > 0.
   1   2       100  Для этого воспользуемся индукцией по n =1,2,...,99.  База индукции x ∈(0,1)
 1  верна по условию. Шаг индукции: при xn ∈ (0,1)  выполнены неравенства     2
0< xn < xn,  поэтому           2
xn+1 =xn − xn <xn <1  и            2
xn+1 = xn− xn > 0,  то есть xn+1 ∈(0,1).

Ввиду доказанного,  3   2
xn < xn = xn− xn+1  для всех n= 1,2,...,99,  поэтому

3   3       3   2   2      2
x1 +x2+ ...+ x99 <x1+ x2+ ...+ x99 = x1− x2+x2 − x3+ ...+ x99− x100 =x1− x100 <x1 < 1,

что и требовалось доказать.

Ошибка.
Попробуйте повторить позже

Задача 5#79775

Найти все натуральные n  , которые можно представить в виде суммы

    2   2
n =a + b,

где a  — минимальный делитель n  , отличный от 1,  и b  — какой-то делитель n.

Источники: Всесиб - 2021, 11.2 (см. sesc.nsu.ru)

Показать ответ и решение

Если n  нечётно, то и все его делители нечётны, поэтому правая часть равенства n= a2+b2  чётна — противоречие. Следовательно,  n  чётно и его минимальный неединичный делитель a  равен 2,  а        2
n= 4+ b.

По условию b  делит        2
n= 4+ b,  значит, делит и разность     2
n − b = 4,  поэтому b  должно быть равно одному из чисел 1, 2, 4.  При этом n  равно 5, 8, 20  соответственно. Первый случай не подходит ввиду нечётности, остальные два удовлетворяют условию задачи.

Ответ: 8 и 20

Ошибка.
Попробуйте повторить позже

Задача 6#80611

В некоторых клетках прямоугольной доски размера 101  на 99  сидят по одной черепашке. Каждую минуту каждая из них одновременно переползает в одну из клеток доски, соседнюю с той, в которой они находятся, по стороне. При этом, каждый следующий ход делается ими в направлении, перпендикулярном предыдущему: если предыдущий ход был горизонтальным — налево или направо, то следующий будет вертикальным — вверх или вниз, и наоборот. Какое максимальное количество черепашек может перемещаться по доске неограниченное время так, что в каждый момент в каждой клетке будет находиться не более одной черепашки?

Источники: Всесиб - 2021, 11.5 (см. sesc.nsu.ru)

Показать ответ и решение

Сначала покажем, что 9800  черепашек могут так перемещаться. Выделим в верхнем левом углу прямоугольник 100 ×98.  Поставим в каждую его клетку по черепашке. Разобьем его на квадратики 2× 2.  И пусть в каждом квадратике черепашки перемещаются по циклу против часовой стрелки. Тогда все черепашки всегда смогут сделать ход.

Докажем, что большего количества черепашек быть не может. Раскрасим нашу доску в 4  цвета в горошек (в первой строке чередуются цвета 1  и 2,  во второй — 4  и 3,  в третьей — снова 1  и 2,  и так далее). Заметим, что клеточек цвета 4  ровно 100⋅98
 4  = 2450.  Рассмотрим клеточки второго цвета. Заметим, что все черепашки на клеточках второго цвета через 2  хода попадут в клеточки четвертого цвета. Тогда в данный момент черепашек на клеточках второго цвета не больше, чем черепашек на клеточках четвертого цвета, то есть также не больше, чем 2450.  Нам осталось оценить сверху количество черепашек, стоящих в данный момент на клеточках первого и третьего цвета. Чтобы это сделать, достаточно подождать один ход, тогда все эти черепашки попадут на клеточки второго и четвертого цвета. А затем проделать те же самые рассуждения. То есть всего черепашек действительно не больше, чем 2450⋅4= 9800.

Ответ:

 100⋅98= 9800

Ошибка.
Попробуйте повторить позже

Задача 7#91342

Пусть m < n  — натуральные числа. Доказать, что среди произвольных последовательных n  натуральных чисел всегда найдутся два, произведение которых делится на mn  .

Источники: Всесиб - 2021, 10.4 (см. sesc.nsu.ru)

Показать доказательство

Среди n  последовательных чисел точно найдется то, которое делится на n  и то, которое делится на m  (так как m < n  ). Если это разные числа, то их произведение делится на mn  . Пусть это одно число a  , НОД (m,n)= d  и       ′
m = dm ,      ′
n = dn . Тогда  ..  ′ ′
a.dm n . Значит, нам нужно найти еще одно число, которое делится на d  . Так как n> m ≥d  , то n ≥2d  . Значит, среди n  последовательных чисел есть еще хотя бы одно, которое делится на d.

Ошибка.
Попробуйте повторить позже

Задача 8#92433

На сторонах AB,BC,CD  и DA  квадрата ABCD  соответственно отмечены точки P,Q,R,S  , отличные от вершин. Известно, что длина стороны квадрата равна 1. Доказать, что выполнены неравенства:

     2     2    2    2
2≤ PQ  +QR  +RS  +SP  < 4.

Источники: Всесиб - 2021, 11.1 (см. sesc.nsu.ru)

Показать доказательство

PIC

По теореме Пифагора

PS2 = AP2 +SA2

P Q2 = BP2 +BR2

   2    2     2
QR  = CQ  +CR

  2    2     2
RS = DR  +DS

Сложим эти равенства и перегруппируем результат в виде:

PQ2 + QR2+ RS2+ PS2 =

(         ) (         )  (        )  (        )
 AP 2+P B2 + BQ2 + QC2 + CR2 + RD2 + DS2 + SA2

Каждое из выражений в скобках имеет вид       2      2    2
f(x)= x +(1− x) =2x − 2x+ 1  для некоторого 0< x< 1  и заключено в пределах от  (1)  1
f 2  =2  включительно до f(1)= 1  невключительно. Следовательно, сумма PQ2 + QR2+ RS2+ SP2  заключена от   (1)
4f 2 = 2  включительно до 4f(1)= 4  невключительно.

Ошибка.
Попробуйте повторить позже

Задача 9#92434

Доказать, что четыре перпендикуляра, опущенных из середин сторон произвольного вписанного четырёхугольника на его противоположные стороны, пересекаются в одной точке.

Источники: Всесиб - 2021, 11.4 (см. sesc.nsu.ru)

Показать доказательство

Обозначим вершины произвольного вписанного в окружность четырёхугольника за A,B,C  и D,  центр окружности за O,  середины сторон AB,BC,CD  и DA  за P,Q,R  и S  соответственно.

PIC

Отрезки OQ  и OS  являются серединными перпендикулярами к сторонам BC  и AD,  поэтому они параллельны перпендикулярам SM  и QL,  опущенным на эти стороны из середин противоположных сторон четырёхугольника. Обозначим точку пересечения этих перпендикуляров за V,  из параллельности отрезков OQ  и SV,  а также OS  и QV  следует, что четырёхугольник OSV Q  является параллелограммом. Следовательно, его диагонали SQ  и OV  пересекаются в точке X,  делящей их пополам. Диагональ SQ  при этом является средней линией четырёхугольника ABCD,  поэтому точка V  пересечения перпендикуляров QL  и SM,  опущенных из середин сторон BC  и AD  на противоположные стороны четырёхугольника, симметрична центру O  описанной окружности относительно середины X  отрезка SQ,  соединяющего середины сторон BC  и AD.

Аналогично доказывается, что точка W  пересечения перпендикуляров, опущенных из середин сторон AB  и CD  на противоположные стороны четырёхугольника, симметрична центру О описанной окружности относительно середины отрезка PR,  соединяющего середины сторон AB  и CD.  Четырёхугольник PQRS,  образованный серединами сторон произвольного четырёхугольника ABCD,  образуют параллелограмм (Вариньона), стороны которого параллельны диагоналям AC  и BD  и равны их половинам.

PIC

Следовательно, отрезки PR  и QS,  являющиеся диагоналями параллелограмма P QRS,  делятся точкой их пересечения пополам, поэтому их середины совпадают. Значит, совпадают и точки W  и V,  симметричные центру O  относительно этих середин.

Таким образом, все четыре перпендикуляра, опущенных из середин сторон вписанного четырёхугольника ABCD,  пересекаются в точке V = W  , симметричной центру O  описанной окружности относительно точки пересечения средних линий P R  и QS  этого четырёхугольника.

Ошибка.
Попробуйте повторить позже

Задача 10#105719

В каждой клетке таблицы 3 ×3  записано некоторое целое число так, что все восемь сумм троек чисел, записанных в клетках каждой строки, каждого столбца и каждой из двух диагоналей, равны одному числу S  (то есть таблица является магическим квадратом 3× 3).  Докажите, что S  делится на 3.

Показать доказательство

Обозначим сумму чисел в каждой строке, каждом столбце и обеих диагоналях за S.  Рассмотрим сумму чисел в четырёх из рассматриваемых в условии троек: второй строки, второго столбца и двух диагоналей. Она равна с одной стороны 4S,  а с другой — сумме всех чисел таблицы плюс утроенное число в центральной клетке. Сумма всех чисел таблицы равна 3S,  поэтому S  равно утроенному числу в центральной клетке, то есть делится на 3.

Рулетка
Вы можете получить скидку в рулетке!