Тема Росатом

Росатом - задания по годам .08 Росатом 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Разделы подтемы Росатом - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#48860

Петя бросает несколько раз на стол игральный кубик и считает сумму очков, выпавших на его верхней грани. Для любого натурального числа n  событие An  наступает, если эта сумма равна n  . Найти вероятность события A11  .

Источники: Росатом-2022, московский вариант, 11.4 (см. olymp.mephi.ru)

Показать ответ и решение

Используем рекуррентную формулу для поиска вероятности A
 n,k  — получить сумму n  за k  бросков

        ∑6                (                         )
P(An,k)=   P(An−i,k−1)⋅ 16 = 16 P(An−6,k−1)+ ...+P (An− 1,k− 1)
        i=1

Действительно, нам нужно откатиться на один бросок назад, в котором с равными вероятностями выпадают 1,2,3,4,5,6  . Посчитаем таблицу вероятностей A
 n,k  (не будем явно прописывать знаменатели 6− k  , оставим только числители)

k∖n  0  1  2  3  4  5  6  7  8  9  10  11
0  1  0  0  0  0  0  0  0  0  0  0  0
1 0 1 1 1 1 1 1 0 0 0 0 0
2  0  0  1  2  3  4  5  6  5  4  3  2
3 0 0 0 1 3 6 10 15 21 25 27 27
4  0  0  0  0  1  4  10  20  35  56  80  104
5 0 0 0 0 0 1 5 15 35 70 126 205
6  0  0  0  0  0  0  1  6  21  56  126  252
7  0  0  0  0  0  0  0  1  7  28  84  210
8  0  0  0  0  0  0  0  0  1  8  36  120
9  0  0  0  0  0  0  0  0  0  1  9  45
10  0  0  0  0  0  0  0  0  0  0  1  10
11  0  0  0  0  0  0  0  0  0  0  0  1

Бросать кубик имеет смысл только от 2  до 11  раз, иначе невозможно получить 11  очков в сумме. Предположим, что каждое количество бросков равновероятно и наступает с вероятностью 110  , получим формулу

          11
P(A11)= 1-∑  P(A11,k) =
        10k=2

  1  ( 2  27  104  205  252  210   120   45   10   1 )   1 ( 710    73)
= 10-⋅ 62 + 63 +-64-+ 65-+ 66-+ 67-+ 68-+ 69-+ 610 + 611 = 10 ⋅ 611-− 1165
Ответ:

-1 ⋅( 710-− 1173)
10   611    65

Ошибка.
Попробуйте повторить позже

Задача 2#48862

По диагоналям оснований AC  и B D
 1 1  куба ABCDA  B C D
       1 1 1 1  с ребром a  ползут два муравья Гоша и Леша. Движение они начали одновременно из точек A  и B1  соответственно с постоянной скоростью, причем скорость Леши была в два раза больше скорости передвижения Гоши и закончили, когда Леша оказался в точке D1  . Какое наименьшее расстояние разделяло Гошу и Лешу во время движения?

Источники: Росатом-2022, московский вариант, 11.6 (см. olymp.mephi.ru)

Показать ответ и решение

PIC

Фиксируем момент времени t

  • M, N  — положение муравьёв в момент t  .
  • K  — проекция точки N  на диагональ BD  .
  • ν  — скорость движения Гоши, 2ν  — скорость Леши.

Тогда имеем

B1N = BK = 2νt

                         2    2  ( a    )2  (  a     )2
AM  = νt,KD = 2νt  =⇒   OM  + OK  =  √2 − νt +  √2-− 2νt

Наконец,

                          (      )2  (       )2
MN2 = f(t)= MK2 + NK2 =a2+   a√-− νt  +  a√-− 2νt
                             2          2

Движение закончилось, когда последняя скобка занулилась, то есть при t= √a2ν  . Относительно t  функция f(t)  является квадратным трёхчленом с положительным коэффициентом при t2  . Вершина находится в точке t= t   = -a√-⋅ 3 ≤-a√-
   верш  μ 2 5   μ 2  . Отсюда                2(    )   2               ∘--
fmin = f(tверш)= a2 3− 45 = a1110 =⇒   dmin = a 1110-  .

Ответ:

 a∘ 11
   10

Ошибка.
Попробуйте повторить позже

Задача 3#67504

Решите уравнение f(x)= √3⋅g(x)  для

f(x) =sinx +sin 3x +sin 5x +...+sin2021x;

g(x)= cosx +cos3x+cos5x+ ...+cos2021x

Источники: Росатом-22, 10.2 (см. olymp.mephi.ru)

Показать ответ и решение

Такие тригонометрические телескопические суммы сворачиваются домножением и делением на sinx  (при этом нужно сказать, что синус ненулевой, потому что числа вида x= πn,n ∈ℤ  решениями уравнения не являются). После домножения получим вот что:

sinx⋅sinx+ sinx⋅sin 3x +...+ sinx ⋅sin2021x=

  √-
=  3(sinx⋅cosx+ sinx⋅cos3x+ ...sinx ⋅cos2021x)

Применим формулы произведения синусов

cos0x−-cos2x+-cos2x-− cos4x-+...+cos2020x−-cos2022x-=
                     2

  √-sin2x+-sin4x−-sin2x+-...+-sin2022x-− sin-2020x
=  3                  2

Слагаемые удачно взаимноуничтожаются и остаётся

1− cos2022x= √3sin 2022x

√ -
--3sin2022x + 1cos2022x= 1
 2          2         2

  (        )
sin 2022x + π = 1
          6   2

Откуда x= πn-,n∈ ℤ
   1011  или x = -π-+ -πk-,k∈ ℤ
    3033  1011  . Осталось учесть условие sinx ⁄=0,  так что n ⁄=1011m,m ∈ℤ.

Ответ:

-πn , π + πk-, n⁄= 1011m, k,n,m ∈ ℤ
10113033  1011

Ошибка.
Попробуйте повторить позже

Задача 4#76628

Петя пришел на остановку автобуса, едущего до школы с остановками равноотстоящими друг от друга, и, не увидев автобуса на дороге, решил пробежаться и сесть в автобус на следующих остановках по пути в школу. Бежал Петя так, что в любой момент времени мог заметить появление автобуса на дороге за своей спиной. Увидев автобус, Петя может повернуть назад или сохранить направление движения. Известно, что скорость движения автобуса в 4 раза превосходит скорость бега Пети, а увидеть автобус он может на расстоянии не более 1 км. Найти наибольшее значение расстояния между остановками, при котором независимо от того повернет Петя назад при обнаружении автобуса или нет, он сможет сесть в автобус на остановке. (время нахождения автобуса на остановке не учитывать)

Источники: Росатом-2022, региональный вариант, 11.1 (см. olymp.mephi.ru)

Показать ответ и решение

PIC

Пусть A  — положение автобуса на дороге в момент, когда его увидел Петя, P  — положение Пети на дороге в момент, когда он увидел автобус, B  — положение последней остановки, которую миновал Петя к моменту, когда он увидел автобус, C  — положение следующей за B  остановки, a  — расстояние между остановками, X  — расстояние между точками B  и P  , v  — скорость бега Пети.

Рассмотрим несколько случаев

Случай 1. Увидев автобус, Петя повернул назад. Петя окажется на остановке B  не позднее автобуса и сможет на него пересесть, если

x≤ 1−-x⇒ x ≤ 1
v   4v       5

Случай 2. Увидев автобус, Петя не изменил направления движения. Петя окажется на остановке C  не позднее автобуса и сможет на него пересесть, если

a−-x   1− x-+a        1
  v  ≤   4v   ⇒ a− x≤ 3

Наибольшее допустимое значение a  соответствует пересечению прямых    1
x= 5  и       1
a= x+ 3.  В итоге находим       -8
amax = 15.

Ответ:

-8
15

Ошибка.
Попробуйте повторить позже

Задача 5#76629

Координаты (x;y)  точек в квадрате {(x;y):0≤x ≤2π,0≤ y ≤ 2π} удовлетворяют системе уравнений

{ sin x+siny = sin1
  cosx +cosy = cos1

Сколько таких точек находится в квадрате? Найти координаты (x;y)  наиболее удаленной точки от центра квадрата.

Источники: Росатом-2022, региональный вариант, 11.2 (см. olymp.mephi.ru)

Показать ответ и решение

Умножаем первое уравнение на cos1,  второе — на sin 1  и вычитаем результаты:

(sinx+ siny)cos1− (cosx+ cosy)sin1 =0

(sinx cos1− cosxsin 1)+ (sinycos1 − cosysin1)= 0

sin(x− 1)+ sin(y− 1)= 0

sin(x− 1)= sin(1− y)

[
  x− 1= 1− y+2πk
  x− 1= π− 1+ y+2πm

Умножаем первое уравнение на sin1,  второе — на cos1  и складываем результаты:

(sinx+ siny)sin1+ (cosx+ cosy)cos1 =1

(cosxcos1+ sinxsin 1)+ (cosycos1+sinysin1)= 1

cos(x− 1)+ cos(y− 1) =1

Из последнего равенства и первого уравнения совокупности имеем

                              ⌊ y = π+ 1+ 2πs
2cos(y− 1)= 1⇒ cos(y− 1) =cosπ ⇒ |⌈    3
                          3     y = 1− π+ 2πl
                                      3

Из первой серии условию задачи удовлетворяет только y1 = π + 1,
    3  из второй серии — только y2 =1 + 5π .
       3  Им соответствуют серия x1 = 2− y1+2πk,  содержащая единственное значение        5π
x1 = 1+ 3 ,  и серия                        5π-
x2 = 2− y2+ 2πk ⇒ x2 = 1− 3 + 2πl  также содержащая единственное значение        π
x2 = 1+ 3.

Случай соответствующий второму уравнению первой совокупности не реализуется, поскольку получаем противоречие

{
  cos(x− 2)= − cos(y− 2) ⇒ 0= 1
  cos(x− 2)+cos(y− 2)= 1
Ответ:

 2;(1+ 5π,1+ π),(1 + π ,1+ 5π)
      3     3      3     3

Ошибка.
Попробуйте повторить позже

Задача 6#76631

Блоха Кузя может совершать прыжки по прямой L.  Старт для прыжков находится в точке A  прямой L,  длина одного прыжка h,  направление каждого прыжка выбирается случайным и равновозможным. Найти вероятность того, что, сделав от четырех до восьми случайных прыжков, Кузя хотя бы один раз будет находиться на расстоянии 3h  от A.

Источники: Росатом-2022, Москва,11.3 (см. olymp.mephi.ru)

Показать ответ и решение

Обозначение: pk
n  — вероятность того, сделав k∈{1,2,...  } прыжков блоха отклоняется от A  на величину nh,n ∈{±1,±2,...} (отрицательные n  указывают, что блоха находится слева от A,  положительные — справа, число n = 0  соответствует точке A  ).

Свойства  k
pn :

1) k
pn =0  для           n   1
n >0,k< n,pn = 2n

2) pkn =pk−n  (равновозможность направления прыжка)

3) попасть на (k+1)  прыжке в положение nh  возможно по условию только из положений (n− 1)h  и (n+ 1)h  с вероятностью  0,5,  поэтому

                     (          )
pkn+1= 1pkn−1+ 1pkn+1 = 1 pkn−1+ pkn+1
      2      2      2

4) при фиксированном k≥ 1  и всех, для n >k ⇒ pkn = 0.  Ниже приведена часть таблицы для определения pkn

PIC

Вероятности, что Кузя закончил прыжки в точке 3h,  записаны в столбце с номером n= 3  и строками от k =4  до k= 8  (отмечены желтым). Но Кузя побывал в точке 3h,  и, если он закончил движение в точках расположенных правее 3h  (до 8h  включительно), соответствующие позиции отмечены зеленым. Однако Кузя мог, побывав в точке 3h,  закончить движение и в симметричных относительно 3h  точках (т.е. слева от 3h,  но с теми же вероятностями, что и справа от 3h  ), поэтому отмеченные зеленым вероятности надо умножить на 2.  Для n= −3  числа те же.

Считаем, что количество прыжков от 4  до 8  равновероятно (с вероятностью 1∕5  ). Тогда суммируем вероятности, отмеченные желтым, добавляем удвоенные вероятности, отмеченные зеленым, результат умножаем на 2  и на 1∕5.  Получим

2(-1     5-  1-   ( 3-  1-)    21-  (-7-  -1-)    (-7  -1  -1-)  )   73-
5 16 ⋅2+ 32 + 32 ⋅2+  32 + 64 ⋅2+ 128 + 128 + 128 ⋅2+ 64 + 32 +256 ⋅2 = 160
Ответ:

-73
160

Ошибка.
Попробуйте повторить позже

Задача 7#76634

Длины рёбер a ,a,a
 1  2 3  и b,b ,b
 1 2 3  прямоугольных параллелепипедов P
 A  и P
 B  — целые числа. Если в параллелепипеде P
  A  увеличить на 1  длину одного из рёбер a1,a2  или a3,  то отношение объёмов VA :VB  изменится на 3, на 5 или на 7 единиц соответственно. Найдите наименьшее возможное при этих условиях значение отношение объёмов VA :VB.

Источники: Росатом-2022, региональный вариант, 11.4 (см. olymp.mephi.ru)

Показать ответ и решение

Обозначим

           a1⋅a2⋅a3
C =VA :VB = b1 ⋅b2⋅b3

Из условий получаем

(a1+b-1⋅)b⋅a⋅2b⋅a3-− a1b⋅⋅ab2⋅⋅ab3= 3= 1b-⋅a⋅2b⋅a⋅3b = 1a-⋅C ⇒ C = 3⋅a1
   1 2  3     1  2  3      1  2 3    1

Аналогично C =5 ⋅a2  и C =7 ⋅a3.

В этом случае целое число C  делится на 3,5  и 7.  С учетом взаимной простоты этих чисел, C =105k,k ∈ℤ  и C ≥ 105.

Покажем, что C = 105  реализуется как отношение объемов некоторых PA  и PB.  Например, a1 =35,a2 =21,a3 = 15,b1 = 3,b2 = 5,b3 = 7.  Тогда

36⋅21-⋅15-− 35⋅21⋅15= -21⋅15 =3
 3⋅5⋅7     3⋅5⋅7   3⋅5⋅7

Аналогично,

35⋅22-⋅15-  35⋅21⋅15- -35⋅15
 3⋅5⋅7  −  3⋅5⋅7 = 3⋅5⋅7 =5

35⋅21-⋅16-− 35⋅21⋅15= -35⋅21 =7
 3⋅5⋅7     3⋅5⋅7   3⋅5⋅7
Ответ: 105

Ошибка.
Попробуйте повторить позже

Задача 8#76637

Можно ли множество из 2017  чисел

{log25,log26,log27,...,log22021}

разбить на две части так, чтобы сумма чисел, попавших в одну из этих частей, отличалась от суммы чисел в другой не более, чем на    1  (по абсолютному значению)?

Источники: Росатом-2022, региональный вариант, 11.5 (см. olymp.mephi.ru)

Показать ответ и решение

На первом шаге в группе A  разместим логарифмы нечетных чисел, а в группе B  — четных:

A = {log25,log27,log29,...,log22021}

B ={log26,log28,log210,...,log22020}

Обозначим через σA,σB  суммы чисел в группах A  и B  соответственно. Покажем, что σA − σB > 1.  Действительно,

(||    log27> log26
|||{    log29> log28
|         ..        ⇒ σA− log25> σB ⇒ σA− σB > log25 >1
||||(         .
  log22021> log22020

Перенесем число log22021  из группы A  в группу B,  а число log2 2020  наоборот — из B  в A.  Поскольку log2 2021> log22020  разность σA − σB  уменьшилась на величину

                    2021     (     1 )
log22021− log2 2020= log22020 = log2 1+ 2020 < 1

Если для вновь образованных множеств A  и B  разность σA − σB >0,  меняем местами числа log22019  и log22018.  По-прежнему, разность σA − σB  уменьшается на величину

log22019− log22018= log2 2019< 1
                    2018

Если разность σA− σB > 0,  по процесс перекладывания чисел из одного множества в другое может быть продолжен. Если на каком-то шаге σA − σB  поменяет знак, то |σA− σB|<1  и искомое разбиение достигнуто. Это обязательно произойдет за конечное число шагов, поскольку замена множеств A  и B  местами приводит к смене знака величины σA − σB.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 9#76639

Клиенты интернет магазина «Али-экспресс» проживают в семи домах, расположенных в вершинах выпуклого семиугольника. От жителей первого дома поступил один заказ, от второго дома – два заказа, и т.д. от жителей шестого – шесть заказов. А вот жители последнего седьмого дома сделали 21  заказ. Менеджер магазина задумался о том в какое место следует доставить все заказы, чтобы суммарное расстояние, преодолеваемое всеми клиентами для получения товара, было минимально возможным. Помогите ему в решении этой задачи и обоснуйте результат.

Источники: Росатом-2022, московский вариант, 11.1 (см. olymp.mephi.ru)

Показать ответ и решение

Пусть O  – произвольная точка привоза товара, d ,d,,...,d
 1 2     7  – расстояния от точки привоза до домов; Суммарное расстояние:

∑
   =1 ⋅d1+ 2d2+3d3+ 4d4 +5d5+ 6d6+ 21d7 =

= (d1+ d7)+ 2(d2+ d7)+4(d4+d7)+ 5(d5+ d7)+ 6(d6+ d7)

PIC

Из неравенства треугольника:

d1+d7 ≥ A7A1, d2+ d7 ≥ A7A2, d3+d7 ≥A7A3, d4+ d7 ≥ A7A4,

d5+ d7 ≥ A7A5, d6+d7 ≥ A7A6 (1)

Равенство достигается только в случае, когда треугольники вырождаются в отрезки.

∑
   ≥A7A1 +2 ⋅A7A2 +3 ⋅A7A3 +4 ⋅A7A4 +5 ⋅A7A5 +6⋅A7A6 (2)

Правая часть неравенства (2)  не зависит от положения точки O,  поэтому

min∑  ≥A7A1 +2⋅A7A2 +3⋅A7A3 +4⋅A7A4 +5⋅A7A5+ 6⋅A7A6

Минимум достигается, когда точка O  совпадает с точкой A7,  поскольку в ней все неравенства (1)  превращаются в равенство.

Ответ: товары следует доставить в седьмой дом

Ошибка.
Попробуйте повторить позже

Задача 10#76643

Найти все числа C  , для которых неравенство |αsin x+β cos2x|≤C  выполняется при всех x  и любых (α;β)  таких, что  2   2
α + β ≤ 4.

Источники: Росатом-2022, московский вариант, 11.2 (см. olymp.mephi.ru)

Показать ответ и решение

 f(x)= |αsin x+β cos2x|≤|α||sinx|+ |β||cos2x|≤ |α|+ |β|.  Покажем, что значение |α|+ |β| всегда достижимо для функции f(x)  при любых (α;β):

1. Если α  и β  одного знака, то  (3π)
f  2 = |− α − β|= |α|+ |β|;

2. Если α  и β  разных знаков, то  (π)
f 2  =|α− β|=|α|+|β|

Таким образом, при фиксированных (α;β)  максимальное значение f(x)  равно |α|+|β|.  В круге  2  2
α +β  ≤4  величина |α|+ |β| принимает наибольшее значение  √-
2 2.

PIC

Итак, при любых (α;β)  в круге α2 +β2 ≤4  и при любых x  справедливо неравенство f(x)= |αsin x+β cos2x|≤2√2,  так что любое C < 2√2  не удовлетворяет условию задачи, а C ≥2√2  искомое.

Ответ:

 C ≥ 2√2

Ошибка.
Попробуйте повторить позже

Задача 11#76644

Члены последовательности a
 n  удовлетворяют соотношению:

          -2--
an+2 = an− an+1 ,a1 = 8,a2 =19

Найти n,  для которого an = 0.

Источники: Росатом-2022, московский вариант, 11.3 (см. olymp.mephi.ru)

Показать ответ и решение

По условию a,a ⁄= 0.
1  2  Элементы последовательности определены пока a   ⁄= 0.
 n+1  Для остальных номеров члены последовательности не определены.

Пусть an+1 ⁄=0,an+2 = 0.  Тогда для всех k ≤n ⇒ ak+1ak− 2.  Последовательность bk = ak+1ak  удовлетворяет соотношению bk+1 = bk − 2  и представляет собой арифметическую прогрессию с разностью d= −2  и первым членом b1 =a2a1 = 8⋅19=152.  Общей её член bk = b1− 2(k− 1)  равен нулю, если

2(k − 1)= 152 ⇒ k= 77⇒ b77 =a77⋅a78 =0 ⇒ a78 = 0
Ответ:

 78

Ошибка.
Попробуйте повторить позже

Задача 12#76647

На плоскости отмечено множество точек M,  координаты x  и y  которых связаны соотношением

sin(2x +3y)= sin2x+ sin3y.

Круг радиуса R,  расположенный на той же плоскости, не пересекается с множеством M.  Какие значения может принимать радиус такого круга?

Источники: Росатом-2022, московский вариант, 11.5 (см. olymp.mephi.ru)

Показать ответ и решение

В левой части равенства применим формулу синуса двойного угла, а в правой части применим формулу суммы синусов:

   2x+ 3y   2x+ 3y      2x+ 3y   2x − 3y
2sin---2--cos--2---= 2sin--2---cos--2---

   2x+ 3y(   2x+ 3y    2x− 3y)
2sin---2-- cos--2---− cos---2--  =0

−4sin 2x-+3ysin3ysinx =0
       2     2

Случай 1: sin2x+3y-= 0⇒ 2x+ 3y =2πk,k∈ ℤ (1)
    2

Случай 2: sin3y= 0⇒ y = 2πk,k∈ ℤ (2)
   2         3

Семейство горизонтальных прямых на плоскости с уравнениями (2)  принадлежат множеству M.

Случай 3:

sinx= 0,y− любое ⇒ x= πk,k ∈ℤ.(3)

Семейство вертикальных прямых на плоскости с уравнениями (3)  принадлежат множеству M.  Семейство прямых разбивает плоскость на равные прямоугольные треугольники с катетами π  и 2π:
3

PIC

Радиус круга, вписанного △ABC,  равен 5−√613π.  Если радиус круга, не имеющего с M  общих точек, имеет радиус R ≥ 5−√613π,  то его центр принадлежит одному из треугольников разбиения, а окружность его границы имеет общие точки со сторонами треугольника. Таким образом, радиус такой окружности меньше радиуса вписанной окружности.

Ответ:

(  5− √13 )
 0;--6---π

Ошибка.
Попробуйте повторить позже

Задача 13#76648

Точка M  лежит на ребре AB  куба ABCDA  B C D .
      1 1 1 1  В квадрат ABCD  вписан прямоугольник MNLK  так, что одной из его вершин является точка M,  а три другие расположены на различных сторонах квадрата основания. Прямоугольник M1N1L1K1  является ортогональной проекцией прямоугольника MNLK  на плоскость верхнего основания A1B1C1D1.  Диагонали четырехугольника MK1L1N  перпендикулярны. Найти отношение AM  :MB.

Источники: Росатом-2022, московский вариант, 11.6 (см. olymp.mephi.ru)

Показать ответ и решение

 K L ||KL ||MN
  1 1  и K L = KL = MN
 1 1  , поэтому четырехугольник MK  L N
   1 1  — параллелограмм. По теореме о трёх перпендикулярах угол ∠K1MK  прямой, поэтому MK1L1N  — прямоугольник. Его диагонали по условию перпендикулярны, поэтому MK1L1N  — квадрат.

Пусть a  — ребро куба, AM  = λa  с неизвестным λ ∈(0;1).

PIC

Тогда MK  = λa√2,MN = (1 − λ)a√2  и по теореме Пифагора

K1M2 = MK2 + KK21 = 2λ2a2+ a2 = a2(2λ2+ 1)

Стороны MK1  и MN  равны, поэтому

2(1− λ)2a2 = a2(2λ2+1)

2λ2− 4λ+2 =2λ2+ 1

    1
λ = 4

В итоге

     a       3a
AM = 4,MB  = 4 ,

так что AM :MB = 1:3.

Ответ: 1 : 3
Рулетка
Вы можете получить скидку в рулетке!