ОММО 2022
Ошибка.
Попробуйте повторить позже
Точка является центром окружности, описанной около треугольника
со сторонами
и
. Найдите длину стороны
, если длина вектора
равна
.
Подсказка 1
В таких задачах на счет нужно очень четко понять, какие переменные мы вводим и зачем это делать. Какие переменные у нас уже известны? Две стороны треугольника. Значит, если попробовать выразить наше выражение векторное, через часть из известных переменных и того, что нам нужно найти, то может что-то получится.
Подсказка 2
Давайте выразим каждый из векторов в выражении через векторы CA и AB, тогда выходит, что |3AC + AB| = 10 (здесь написаны векторы). Далее, нам ничего не остается как возводить в квадрат, но там вылезет косинус из произведения векторов. Как побороть эту проблему, если у нас в виде переменных остаются AB и cos(BAC).
Подсказка 3
Конечно, у нас есть cos(BAC) и AB, значит все намекает на теорему косинусов для треугольника ABC и стороны BC. Вычтя из нашего равенства, которое получилось возведением в квадрат модуля, равенство из теоремы косинусов, получим уравнение, в котором есть AB*cos(BAC), приравненное к константе. Что тогда можно сделать, чтобы найти AB?
Подсказка 4
Само собой, остается подставить это в уравнение, полученное из модуля, так как после подстановки, там останется одна неизвестная - AB, а значит, задача решена!
Будем пользоваться тем, что скалярный квадрат вектора равен квадрату длины вектора.
Из условия получаем, что
А теперь возведём обе части в квадрат:
По теореме косинусов из треугольника имеем
Вычитая это равенства из полученного выше, получаем
С учётом имеем
Подставим в
Ошибка.
Попробуйте повторить позже
Докажите, что для каждого натурального числа число
делится на
Источники:
Подсказка 1
Какое слагаемое из этой суммы выбивается сильнее других? Как можно его исправить?
Подсказка 2
Сильнее других выбивается 5^2n. При этом мы рассматриваем выражение по модулю 11(так как хотим, чтобы на 11 делилось выражение). Как исправить 5^(2n), чтобы оно имело такой же вид, как и другие слагаемые?
Подсказка 3
Рассмотреть сравнение 5^2 = 3(mod 11). В таком случае можно возвести сравнение в степень n и подставить в изначальное выражение, то есть заменить 5^(2n) на выражение с тем же остатком по модулю 11
Первое решение.
Поскольку , то по модулю
имеем
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Докажем утверждение задачи для целых неотрицательных индукцией по
База: Если то
— делится на
Переход: Предположим, что при число
делится на
и докажем, что при
число
также делится на
Заметим, что
Первое слагаемое в правой части делится на по предположению индукции, а второе — потому что содержит множитель
Значит,
и вся сумма делится на
Переход доказан.
Ошибка.
Попробуйте повторить позже
Функция определена на множестве троек целых чисел и принимает действительные значения. Известно, что для любых четырёх целых
чисел
и
выполняются равенства
,
. Найдите
Источники:
Подсказка 1
Давайте посмотрим на нашу функцию и на то, что с ней можно делать. Во-первых, можно выносить общий множитель из аргумента. Во вторых, можно вычитать, прибавлять что угодно и к аргументам функции, и к её значению, при этом равенство останется верным. Ещё наша функция симметрична относительно первой и второй переменной. Теперь подумаем, как нам можно получить F(58,59,60). Это три последовательных числа. Значит, чтобы получить значение на этих значениях, мы можем найти значение в точке F(k-1,k,k+1) и потом по второму свойству найти требуемое. При этом как-то надо воспользоваться двумя другими условиями. Попробуйте подобрать такое k, чтобы значение в нём можно было бы найти с помощью двух других условий.
Подсказка 2
Если вы еще не нашли такое k, то давайте вместе подумаем, каких бы свойств нам хотелось бы от k. Во-первых, надо, чтобы оно определялось (то есть его значение становилось известным) только через первое и третье условие, так как если оно известно через второе, то это нам не подходит, поскольку тогда либо существует тройка, значение которой определяется через первое и третье условие, либо все значения определяются через второе, однако последнее, очевидно, неверно. Значит, существует тройка, которая определяется через первое и третье. Поскольку оба этих условия не дают свободного члена, то единственное, что мы можем получить из этих уравнений - это 0, поскольку, если мы получим равенство двух значений, без свободного члена, то это будет их отношение и , коль скоро, мы не используем второе выражение, то единственное отношение, которое можно получить и найти значение функции в точке - это 0. Значит, нам нужно получить 0. Значит, с одной стороны функция равна себе, а с другой стороны минус себе. Попробуйте что-то с этим сделать.
Подсказка 3
Если мы хотим, чтобы функция в точках была равна минус себе, то так как n*F(a,b,c) = n*F(c,b,a) = F(na,nb,nc), мы хотим, чтобы na = -nc, nb = - nb, nc = -na. Но из второго равенства следует, что nb=0, а значит и b = 0(иначе, n = 0, и у нас просто функция от нулей равна 0. Что не подходит нам под условие на k-1,k,k+1. Значит, b = 0, a = -1, c = 1. И значит, F(-1,0,1)= 0 = F(58,59,60) - 59.
Заметим, что для
Отсюда легко видеть
Ошибка.
Попробуйте повторить позже
Группа авантюристов показывает свою добычу. Известно, что ровно у 13 авантюристов есть рубины; ровно у 9 — изумруды; ровно у 15 — сапфиры; ровно у 6 — бриллианты. Кроме того, известно, что
- если у авантюриста есть сапфиры, то у него есть или изумруды, или бриллианты (но не то и другое одновременно);
- если у авантюриста есть изумруды, то у него есть или рубины, или сапфиры (но не то и другое одновременно).
Какое наименьшее количество авантюристов может быть в такой группе?
Источники:
Подсказка 1
Внимательно посмотрим на условие: рассмотрим авантюристов, у которых есть сапфиры! На какие группы мы можем их разделить?
Подсказка 2
Обладателей сапфиров столько же, сколько суммарно обладателей изумрудов и бриллиантов. Теперь посмотрим на второе условие. Мы знаем, какие камни есть у тех, кто обладает изумрудами. Кто тогда обладает рубинами и как это влияет на общее количество человек?
Подсказка 3
Заметим, что есть 9 обладателей сапфиров и изумрудов и 6 обладателей сапфиров и бриллиантов. Тогда 13 обладателей рубинов никак не могут пересекаться с девятью обладателями изумрудов!
Заметим, что количество авантюристов, у которых есть сапфиры, равняется суммарному количеству авантюристов, у которых есть
изумруды или бриллианты. Тогда из первого условия следует, что у 9 авантюристов есть сапфиры и изумруды, а у 6 —
сапфиры и бриллианты. Т.е. у каждого авантюриста, у которого есть изумруды, обязательно есть сапфиры. Тогда, из
второго условия, не может быть авантюриста, у которого есть и изумруды, и рубины. Значит, авантюристов как минимум
Столько авантюристов и правда может быть: пусть у нас есть 9 авантюристов, у которых есть сапфиры и изумруды, 6 авантюристов, у которых есть сапфиры, бриллианты и рубины, а также 7 авантюристов, у которых есть только рубины. Можно убедиться, что этот пример подходит под все условия.
Ошибка.
Попробуйте повторить позже
Бригада рабочих трудилась на заливке катка на большом и малом полях, причем площадь большого поля в 2 раза больше площади малого поля. В той части бригады, которая работала на большом поле, было на 4 рабочих больше, чем в той части, которая работала на малом поле. Когда заливка большого катка закончилась, часть бригады, которая была на малом поле, еще работала. Какое наибольшее число рабочих могло быть в бригаде?
Источники:
Подсказка 1
Исходя из условия сразу можно с помощью переменных выразить, сколько человек в каждой части бригады(через n), какова производительность групп, площадь катка и время работы.
Подсказка 2
Запишем неравенство по условию: S/an > 2S/(a(n+4)). Осталось лишь его решить и оценить n.
Обозначим число рабочих на меньшем поле как тогда их количество на большем поле равно
а всего в бригаде
человека.
В условии задачи предполагается, что производительность каждого рабочего одинаковая, обозначим ее
Соответственно,
производительности каждой части бригад равны
и
Если площадь малого поля
то площадь большого равна
Время,
затраченное на выполнение всей работы каждой из бригад, соответственно равно
По условию задачи
В силу положительности всех переменных, это неравенство равносильно неравенству
Поэтому следовательно,
Ситуация равенства, очевидно, возможна: достаточно взять любые положительные
и
Ошибка.
Попробуйте повторить позже
Решите в действительных числах систему уравнений:
Источники:
Подсказка 1
Перед нами система с 4 неизвестными, в которой, если начать выражать всё последовательно, ничего хорошего не выйдет. Давайте немного повспоминаем, где такая конструкция встречается? Возможно, вы этим занимались в алгебре.
Подсказка 2
Ага, если вспомнили, то отлично. Если нет, то ничего страшного. Попробуйте перемножить два приведённых трёхчлена с коэффициентами a, b, c и d и привести подобные слагаемые. Не видите сходств? Какой вывод отсюда можно сделать?
Подсказка 3
Да, нам по сути сказали коэффициенты многочлена 4 степени! Видеть такое вы могли в методе неопределённых коэффициентов как раз для уравнения 4 степени. Теперь вы можете попробовать найти очевидные корни этого многочлена и разложить его на скобки. Теперь осталось понять главное. Для чего вы всё это делали?
Подсказка 4
Точно, для того, чтобы понять, что корни будут единственными. Вы могли и просто так угадать a, b, c и d, но о единственности ничего утверждать не могли. Осталось только сопоставить наши изначальные квадратные трёхчлены с тем, что получилось в итоге, и победа!
Пусть и
— два квадратичных многочлена, коэффициенты которых — искомые корни данной системы.
Тогда
Из делителей свободного коэффициента находим корни
и
, тогда можно поделить многочлен на
что возможно только в двух случаях:
тогда в первом случае получаем а во втором —
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
В первую очередь, когда в задаче мы видим тригонометрические функции, нужно сразу вспоминать про ограничения на аргументы.
Подсказка 2
Когда мы найдём ограничения на x, можно использовать стандартную идею в арктриге, давайте возьмём прямую функцию от обратных. В нашем случае, функцию синуса от правой и левой части уравнения.
Подсказка 3
В правой части всё легко и понятно, но вот с левой явные проблемы. Давайте обратим внимание на то, что слева у нас ни что иное, как синус суммы. Распишем его по формуле.
Подсказка 4
Воспользуемся тем, что cos(arcsin(t)) = √(1-t²). После чего получаем уравнение, которое при вынесении общего множителя разобьётся на два случая, когда x = 0(не забудьте проверить, что он подходит), а так же на второй случай, когда x≠0.
Подсказка 5
Во втором случае получается уравнение √(336-11x²) + √(84-11x²) = 5√21. Ограничения на x, которые мы считали в начале, тут нам помогут в утверждении, что подкоренные выражения положительные. Если несколько раз использовать тот факт, что правая и левая часть положительны и мы можем их возводить в квадрат, то дорешать уравнение не составит труда, главное, не забудьте проверить, что корни уравнения подходят.
Из условия на область определения арксинуса вытекает, что
(1) |
Вычисляя синус от обеих частей уравнения и учитывая, что
и, следовательно,
получаем
Перенося все в левую часть уравнения, упрощая и вынося общим множитель за скобки, имеем
Из данного уравнения следует, что или (который, очевидно, подходит), или
является корнем уравнения
Из условия следует, что все подкоренные выражения положительны. Поскольку обе части уравнения положительны, то их можно
возвести в квадрат
Перенося всё кроме корня в правую часть уравнения, имеем
Возводя ещё раз обе части уравнения в квадрат, получаем
или
Таким образом, уравнение имеет ещё два возможных корня
Проверка. Проверяем, что левая часть уравнения при данных значениях аргумента лежит в промежутке Для этого
вычисляем косинус левой части
Поскольку значения косинуса положительно, а левая часть лежит в промежутке то она лежит в промежутке
Значит, все найденные числа являются решением задания.
Ошибка.
Попробуйте повторить позже
При каких значениях параметра уравнение
имеет ровно два корня, один из которых в четыре раза больше, чем другой?
Источники:
Подсказка 1
Решать параметр с логарифмом совсем как-то не хочется. Какое первое действие можно сделать сразу?
Подсказка 2
Верно, можно просто сделать замену логарифма и решать для начала квадратное уравнение с параметром. В таких случаях очень полезно бывает проверить, не имеет ли наше уравнение очевидных корней? Угадать их помогает разложение свободного члена и теорема Виета.
Подсказка 3
Ага, корни нашего уравнения 3 и 3-a. Осталось только сделать обратную замену, выполнить условие задачи, и победа!
Пусть тогда уравнение принимает вид
Заметим, что
Отсюда по теореме, обратной теореме Виета, корни этого уравнения и
Делаем обратную замену:
Получаем два случая:
Ошибка.
Попробуйте повторить позже
В треугольнике сторона
Биссектриса
делится точкой пересечения биссектрис треугольника в отношении
считая от вершины. Найдите длину стороны
если радиус вписанной в треугольник
окружности равен
14.
Источники:
Подсказка 1
Вот у нас есть уже одна биссектриса и центр вписанной окружности. Попробуйте рассмотреть биссектрису из точки A, но только не в треугольнике ABC, а в треугольнике ALC) Чем здесь можно воспользоваться?
Подсказка 2
Например, свойством биссектрисы про отношение сторон) Из этого будет следовать, что AL = 21. Теперь попробуйте понять, как можно выразить синус угла A..
Подсказка 3
Различным выражением площади треугольника ALC) Ведь с одной стороны это просто формула площади через синус и две стороны, а с другой стороны, можно разбить треугольник на два: AIC и AIL. Но как удобнее найти их площади?
Подсказка 4
Площадь каждого можно найти с помощью радиуса вписанной окружности и сторон, ведь в этих треугольниках радиусы будут высотами!Так, мы находим синус А = 1, т.е. угол А прямой) А дальше просто обычный счет и использование свойства биссектрисы снова)
Пусть — центр вписанной в треугольник
окружности (т.е. точка пересечения биссектрис). Заметив, что
— биссектриса, в
треугольнике
в силу свойства биссектрисы треугольника имеем:
Далее,
где — радиус вписанной в треугольник
окружности. Таким образом,
В силу свойства биссектрисы треугольника
имеем
Полагая имеем
В силу теоремы Пифагора:
Ошибка.
Попробуйте повторить позже
Пусть — множество действительных чисел, не содержащее
и
Известно, что если
то
и
Может ли в
быть ровно 1000 элементов?
Источники:
Подсказка 1
По факту, у нас есть операции x -> 1/x и x -> 1 - 1/x. Подумайте, какие и сколько чисел мы вообще сможем получить из одного числа x, применяя эти операции?
Подсказка 2
Если просто поприменять эти операции, то можно заметить, что получится только 6 чисел, если они все различные. А можно ли получить из них меньше различных?
Подсказка 3
Да, попробуйте приравнять какие-то из всех полученных чисел, и вы поймете, могут ли они совпадать, либо если они совпадают, то при каком x) А сколько различных чисел вышло уже в этом наборе?
Подсказка 4
3! А теперь подумайте: у нас все наборы по 6 чисел и один из трех...Можно ли получить тогда множество из 1000 чисел?)
Посмотрим на числа Пусть
Заметим, что отображение переводит числа
в числа
соответственно, а отображение
— в числа
соответственно.
Кроме того, заметим, что
Поэтому если то каждое из чисел
лежит в
причём этот набор переходит в себя под действием
и
Может ли в этом наборе быть меньше шести чисел? Да, если некоторые совпадают. Не умаляя общности, можно считать, что одно из
этих чисел равно . Тогда или
откуда
(т.к.
по условию), или
откуда
, или
откуда
— нет решений, или
откуда
(т.к.
по условию), или
откуда
— нет решений.
Итак, в наборе может быть меньше 6 чисел, только если это набор
Итак, все действительные числа, кроме и
разбились на шестёрки и одну тройку, набрать из которых
чисел не
получится.
Ошибка.
Попробуйте повторить позже
Докажите, что число делится на 61.
Источники:
Заметим, что
Значит,