Тема ИТМО (Открытка)

ИТМО - задания по годам .09 ИТМО 2023

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела итмо (открытка)
Разделы подтемы ИТМО - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#68521

На конференцию приехали 100  учёных. Оказалось, что у любых двоих как минимум двое общих знакомых. Докажите, что у кого-то из них хотя бы 15  знакомых.

Источники: ИТМО - 2023, 10.7

Показать доказательство

Предположим противное. Рассмотрим граф, вершинами которого будут являться учёные, две вершины будем соединять ребром, если соответствующие учёные знакомы. Из нашего предположения степень каждой вершины не превосходит 14  . Посчитаем двумя способами количество растопырок, то есть конфигураций из 3  вершин, одна из которых (будем называть её главной) соединена с двумя другими). С одной стороны для каждой пары вершин к ним в растопырку можно выбрать хотя бы 2  главные. Итого растопырок не меньше, чем 100⋅99⋅2
---2----=9900  . С другой стороны для каждой вершины количество растопырок, в которых она является главной, не превосходит 14⋅13= 91
  2  . То есть всего растопырок не больше 100⋅91= 9100 <9900  , откуда получаем противоречие.

Ошибка.
Попробуйте повторить позже

Задача 2#68642

Вася написал на доске три числа: sinx,sin2x  и sin 3x  в каком-то порядке. Все числа оказались различными. Петя пытается определить, какое из чисел где. Какое из трёх утверждений верно:

(1) У Пети всегда получится определить, где sinx,  где sin2x,  а где sin3x.

(2) При некоторых значениях получится, а при некоторых нет.

(3) Никогда не получится.

Источники: ИТМо-2023, 11.3 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1.

Интуитивно можем догадаться, что всё-таки при некотором наборе можно будет однозначно определить, какое число где, а при некотором не получится.

Подсказка 2.

Это верно для x₁ = π/2, x₂ = -π/2. Теперь наша цель найти такой набор, который получится однозначно определить. Возьмем x₀ = π/17. Тогда (sin(x₀), sin(2*x₀), sin(3*x₀)) = (sin(π/17), sin(2*π/17), sin(3*π/17))

Подсказка 3.

Например, при x = 2*π/17 + 2πk: sin(x) = sin(2*x0). Но sin(2*x) = sin(4π/17), что явно больше, чем sin(π/17) и sin(3*π/17). Получается, что при таком x получается другой набор синусов. Попробуйте доказать, что в каждом из остальных случаев также будет получаться другой набор синусов.

Показать ответ и решение

Если x  = π,2x = 2π,3x = 3π-,
 0   17   0  17  0   17  то их синусы различны и положительны.

Пусть найдётся x  для которого эти три синуса получаются такими же, но в другом порядке. Разберём случаи возможных x,  когда sinx  совпадает с одним из написанных на доске чисел:

1) x= π-+ 2πk.
   17  Синусы получаются такие же, как и для x0  в том же порядке.

2) x = 16π-+ 2πk.
    17  В этом случае sinx  и sin3x  получаются такие же, как и для x0  в том же порядке, а sin2x  меняет знак, т.е. получается другой набор чисел.

3)    2π
x= 17 + 2πk.  В этом случае sinx= sin2x0.  Однако          (4π)
sin 2x = sin 17  ,  что не совпадает ни с sinx0,  ни с sin3x0,  так как больше каждого из них.

4)     15π-
x = 17 + 2πk.  В этом случае sinx= sin2x0.  Однако          (30π)
sin2x =sin  17  ,  что не совпадает ни с sinx0,  ни с sin3x0,  так как отрицательно.

5) x= 3π+ 2πk.
   17  В этом случае sinx= sin3x0.  Однако          (  )
sin 2x = sin 6π  ,
          17  что не совпадает ни с sinx0,  ни с sin2x0,  так как больше каждого из них.

6) x = 14π-+ 2πk.
    17  В этом случае sinx= sin3x0.  Однако          (   )
sin2x =sin  28π ,
          17  что не совпадает ни с sinx0,  ни с sin2x0,  так как отрицательно.

Таким образом, единственная возможность получить те же 3 синуса, это случай 1), в котором порядок синусов также совпадает.

Теперь приведём противоположный пример: рассмотрим x1 = π.
    2  Тогда sinx1 = 1,sin2x1 = 0,sin3x1 = −1.  С другой стороны, пусть x = − π.
 2    2  Тогда sinx  =− 1,sin2x = 0,sin3x =1.
   2         2        2  Таким образом, Петя не сможет отличить эти две ситуации друг от друга.

Ответ: второе

Ошибка.
Попробуйте повторить позже

Задача 3#68706

Дан куб ABCDA  B C D
      1 1 1 1  с ребром равным x.  S  — сфера, вписанная в каркас этого куба (то есть, касающаяся всех его рёбер). Точка M  — середина ребра B1C1.  Прямая AM  вторично пересекает сферу S  в точке X.  Найдите AX.

Источники: ИТМО-2023, 11.4 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

У нас есть вписанная сфера, а мы хотим найти какой-то отрезок, конец которого лежит на сфере. Может, попробовать применить теорему о касательной и секущей...

Подсказка 2

Наша сфера касается ребра AA₁ в точке K, где K- середина AA₁. Тогда AK²=AX*AM. Надо как-то найти AM...

Подсказка 3

Мы работаем с кубом, поэтому логично было бы поискать теоремки Пифагора. Например для треугольника AMB₁. А почему он прямоугольный?

Подсказка 4

Потому что C₁B₁ перпендикулярен плоскости ABB₁. Тогда по теореме Пифагора для AMB₁: AM²=AB₁²+MB₁². Мы знаем, что B₁M=x/2. Осталось только найти AB₁² и досчитать AX.

Показать ответ и решение

PIC

Пусть L  — середина ребра BC,  тогда BL = BC2-= x2.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △ABL  получаем

                ∘ ------   -
    ∘ --2----2-    2  x2  √5x-
AL=   AB + BL  =  x + 4 =  2

M  — середина B1C1,  а L  — середина BC,  следовательно, ML,  как средняя линия квадрата BCC1B1,  равна BB1,  т.е. равна   x.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △AML  получаем

                  ∘ -------
AM  =∘AL2--+ML2-=   5x2+ x2 = 3x-
                     4       2

Пусть K  — середина ребра AA1,  тогда      x
AK = 2.  Т.к. сфера S  вписана в каркас куба ABCDA1B1C1D1,  значит, точками касания являются середины рёбер. Следовательно, используем теорему о касательной и секущей

                    AK2   2x2   x
AK2 =AX ⋅AM  ⇒ AX = AM--= 4⋅3x = 6
Ответ:

 x
 6

Ошибка.
Попробуйте повторить позже

Задача 4#68707

Для произвольных вещественных чисел x,y,z,t,  больших 7  , докажите неравенство:

  ∘--------------------       2      2       2      2
4⋅ (x− 3)(y− 4)(z− 5)(t− 6)< (x − 2) + (y− 5) +(z− 7) + (t− 4)

Источники: ИТМО-2023, 11.5 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

Справа сумма степеней каких-то чисел, а слева корень из произведения других, но прям очень похожих. На какие классические неравенства нам намекает данная конструкция?

Подсказка 2

В данном случае нам следует воспользоваться неравенством о средних, причем левую часть явно стоит оценить сверху, а правую - снизу, значит, и неравенства для них следует использовать различные.

Подсказка 3

Теперь внимательно посмотрите на то, чему равна сумма элементов правой и левой части. Может быть, это как-то поможет свести два неравенства о средних в одно.

Подсказка 4

Не забудьте доказать строгость полученного неравенства, ведь в неравенствах о средних у нас используются знаки ≤ и ≥, а в условие стоит <. Для этого вспомните при каких условиях неравенства о средних обращаются в равенства.

Показать доказательство

По неравенству о среднем арифметическом и среднем геометрическом

4∘ -------------------- (x−-3)+(y−-4)+(z−-5)+(t− 6)
  (x − 3)(y − 4)(z− 5)(t− 6)≤           4

Отсюда

  ∘ --------------------  (x +y+ z+ t− 18)2
4 ⋅ (x− 3)(y− 4)(z − 5)(t− 6)≤-----4-------

При этом, чтобы это равенство обращалось в равенство, должно выполняться x − 3 =y − 4= z− 5= t− 6.

По неравенству о среднем арифметическом и среднем квадратичном

                           ∘ -----------------------------
(x−-2)+(y−-5)+(z−-7)+(t− 4)≤  (x− 2)2+-(y-− 5)2+(z−-7)2+-(t− 4)2
            4                              4

Отсюда

(x +y +z+ t− 18)2
-------4-------≤ (x− 2)2+ (y− 5)2+(z− 7)2+ (t− 4)2

При этом, чтобы это равенство обращалось в равенство, должно выполняться x − 2 =y − 5= z− 7= t− 4.

Таким образом,

    --------------------               2
4⋅∘ (x − 3)(y− 4)(z− 5)(t− 6)≤ (x+-y+-z+t−-18) ≤(x− 2)2 +(y− 5)2+ (z − 7)2+(t− 4)2
                                4

При этом оба неравенства не могут обращаться в равенство одновременно, следовательно

4⋅∘(x−-3)(y−-4)(z−-5)(t− 6)< (x − 2)2+ (y− 5)2 +(z− 7)2+ (t− 4)2

Ошибка.
Попробуйте повторить позже

Задача 5#68708

В трапеции ABCD  длины диагонали BD  и основания BC  равны. Точка X  на луче BD  такова, что BX  =CX.  На прямой CX  взята точка Y  такая, что AB =BY.  Известно, что          ∘        ∘
∠DBC  = α ,∠ABD  =β .  (При этом         ∘
α +β ⁄= 90 и   ∘
180 − α − β >α)  Найдите градусную меру угла ∠BYC.

Источники: ИТМО-2023, 11.6 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

Множество равных отрезков да еще и параллельные прямые в трапеции. В такой картинке больше всего хочется найти все равные углы, которые есть, давайте так и поступим.

Подсказка 2

Если вы правильно воспользуетесь равнобедренными треугольниками и параллельностью AD и BC, то станет понятно, что ∠XCB = ∠XDA. Еще мы знаем, что BD = BC, то есть точки D и C находятся как бы на одной окружности с центром в точке B. Что хочется сделать в такой конструкции?

Подсказка 3

Давайте повернем рисунок против часовой стрелки относительно точки B на угол равный альфа. Куда в таком случае перешли точка C и прямая CX?

Подсказка 4

Точка C перейдет в точку D, а прямая CX в прямую AD. Вспомните, что BA=BY, и подумайте, куда в таком случае могла перейти точка Y. Рассмотрите все возможные случаи и найдите в каждом случае градусную меру угла ∠BYC

Показать ответ и решение

PIC

△BXC  равнобедренный, поэтому ∠XCB  =∠XBC  = α.  Накрест лежащие углы равны: ∠BDA = ∠DBC = α  . Значит, ∠XCB  = ∠BDA.

Повернём картинку на угол α  относительно точки B  так, чтобы точка C  перешла в точку D.  Из доказанного выше равенства углов следует, что прямая CX  при этом повороте перейдёт в прямую DA.  Точка Y  при этом перейдёт в такую точку на прямой AD,  что расстояние от неё до точки B  равно AB.  Таких точек две. Одна из них точка A,  а вторая — какая-то точка A′.

Значит, ∠BYC = ∠BAD  или ∠BYC = ∠BA′D.  ∠BAD  = 180∘− ∠ABC = 180∘− α− β,  как односторонний угол. Это один из ответов.

Посмотрим теперь на точку A′.  △BAA ′ равнобедренный, причём ∠BAA ′ равен тому из углов ∠BAD  и 180∘− ∠BAD,  который является острым (случай прямого угла исключается значениями углов α  и β,  которые даны в каждом их вариантов). Если ∠BAD  тупой, точка A′ очевидно лежит на луче DA  и ∠BA ′D= 180∘− ∠BAD =α +β.  Если же ∠BAD  острый, ∠BA′A= ∠BAA ′ = ∠BAD = 180∘ − α − β  и точка A′ находится на луче AD.  При этом во всех вариантах 180∘− α − β > α,  т.е. ∠BA′A> ∠BDA,  поэтому точка A′ лежит ближе к A,  чем D  , т.е. попадает на отрезок AD.  Значит, ∠BA ′D = 180∘ − ∠BA ′A = α+ β.

Ответ:

 α +β,180∘ − α − β

Ошибка.
Попробуйте повторить позже

Задача 6#68709

Последовательность x
 n  задана рекуррентным соотношением x   = x + {x }
 n+1   n    n и начальным условием x = 1-.
 0  67  Найдите [x66000].

([a]  — целая часть числа a,  {a} — дробная часть числа a).

Источники: ИТМО-2023, 11.7 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

Дробная часть, целая часть, ну и ну… А x_(n+1) = x_n + {x_n}, то чему равно x_(n+1) если использовать только дробные и целые части числа, а не само число?

Подсказка 2

Верно, x_(n+1) = [x_n] + 2*{x_n}. Значит, если смотреть только на дробную часть, то нетрудно доказать, что она будет равна дроби со знаменателем 67, а также, что числители дроби будут являться циклом, если рассмотреть последовательность целиком(как минимум, потому, что числитель n-ого члена последовательности сравним по модулю с 2^n, а остатки у 2^n по модулю 67 образуют цикл). А что можно тогда сказать, про члены, разность индексов которых равна 1 циклу?

Подсказка 3

Верно, во-первых, что(если длина цикла k и мы берем i-ый элемент), то {x_(i+k)} = {x_i}. Но тогда из этого следует, что x {x_(i+k)} - {x_i} = {x_(i+2k)} - {x_(i+k)}, так как {x_(i+2k)} = {x_(i+k)}. При этом, так как нам неважно, какая разность была между {x_(i+k)} и {x_i}, для вычисления x_(i+k+1), так как влияет только дробная часть, то будет выполнено, что

Подсказка 4

Верно, что можно просто найти эту разность(и цикл) и понять, в каком по порядке циклу лежит x_66000 и чему он соответствует в первом цикле и мы сможем в явном виде найти x_66000. Как это сделать? Начать писать все x_i, начиная с нулевого, пока в числителе дробной части не будет 0. А значит, осталось перебрать 66 значений(10 минут) и найти нужные значения!

Показать ответ и решение

Пусть оказалось так, что {x   }= {x}
 k+i    i для некоторого k >0  . Тогда выполнено x  − x = x   − x
 k+i   i   2k+i   k+i  . Действительно, на каждой следующей итерации мы учитываем только дробную часть исходного числа (целая же часть определяет только нашу “точку старта”). Поэтому выполнено равенство {x2k+i}= {xk+i} . Также отсюда будет следовать [xk+i]− [xi]= [x2k+i]− [xk+i]  , то есть наш сдвиг по целой части будет таким же. Нетрудно видеть, что оба условия вместе дадут xk+i− xi = x2k+i− xk+i  (если известно {xk+i}= {xi} ). Далее остаётся только найти цикл нужной длины. Оказывается, что       1
x66 = 337  и выполнено {x0}= {x66} , мы получили цикл, получаем

[x66000]= [x0+66⋅1000]= 1000 ⋅([x66− x0])= 1000⋅33= 33000

Замечание. Как же найти такой цикл, не считая вручную все 66  значений до него? Во-первых, уже       66     1-
{x33}= 67 = 1− 67  , что явно нам намекает, когда мы снова встретим единицу (по сути мы каждый раз умножаем дробную часть на 2, поэтому можно сразу сделать вывод, что на 66  шаге, поскольку за столько же шагов результат возведётся в квадрат по модулю 67  ). Во-вторых, уже на шестом шаге мы получим          3-
{x6}= 1− 67  , поэтому далее можно попробовать идти по кратным шести индексам, чтобы быстрее добраться до 66  . Почему вообще всё это имеет смысл? Потому что 66000  делится и на 6, и на 33, и на 66 — именно в них мы и ждём больше всего увидеть цикл, чтобы задача после этого решилась быстро и легко.

Ответ: 33000

Ошибка.
Попробуйте повторить позже

Задача 7#68710

На бесконечной клетчатой плоскости некоторые клетки покрашены в красный цвет, некоторые — в синий, а некоторые остались непокрашенными. Известно, что в каждой строчке, где есть хотя бы одна синяя клетка, есть также хотя бы 5 красных, а в каждом столбце, где есть хотя бы одна красная клетка, есть хотя бы 6 синих. Какое наименьшее положительное число покрашенных клеток может быть на плоскости?

Источники: ИТМО-2023, 11.8 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

Для начала заметим, что мы можем избавиться от всех столбцов, в которых все клетки синие и от всех строк, в которых все клетки красные. Теперь в каждом столбце и строке у нас и синие, и красные клетки. Пусть у нас есть m строк и n столбцов ,x-кол-во красных клеток, y-кол-во синих клеток. По условию в каждом столбце хотя бы 6 синих клеток => y>=6n, аналогично x>=5m. В каждой строке есть хотя бы одна синяя клетка и 5 красных, n>=6.Аналогично m>=7.Чтобы догадаться до ответа, бывает полезно рассмотреть частный случай. Попробуйте рассмотреть случай, когда все закрашенные клетки будут находиться только на пересечении строк и столбцов.

Подсказка 4

Так как n<=9 и x>=60, то в каком-то столбце >=7 красных клеток, тогда в каком-то столбце >=13 клеток, тогда m>=13 и x>=65 и y<55. Вам не кажется это похожим на предыдущий шаг? Попробуйте теперь сами сделать то же самое.

Подсказка 5

После нескольких таких шагов мы получим, что n<=5, но у нас n>=6. Противоречие! Со вторым случаем делаем то же самое. Оценка доказана. Значит, наш ответ 120.

Показать ответ и решение

Примеров для 120 закрашенных клеток несколько, они все отличаются перестановкой строк и столбцов. Можно взять прямоугольник 12× 10  и раскрасить его в шахматном порядке в красный и синий цвет.

Докажем теперь, что меньше 120 закрашенных клеток не может быть.

Если в каком-то столбце есть закрашенные клетки, то по условию они либо только синие, либо обоих цветов. При этом, если в каком-то столбце все закрашенные клетки синие, можно превратить их все в незакрашенные. При этом условие задачи сохранится, а количество закрашенных клеток уменьшится (но не до нуля, так как в строчках с этими синими клетками останутся какие-то красные). Аналогичным образом можно избавиться от строчек, в которых есть красные клетки, но нет синих. Теперь можно считать, что во всех строчках и столбцах, где есть закрашенные клетки, присутствуют клетки обоих цветов.

Пусть у нас x  красных клеток и y  синих, при этом закрашенные клетки находятся в m  строках и n  столбцах. Так как в каждом из этих n  столбцов присутствуют хотя бы 6 синих клеток, выполняется неравенство y ≥6n  или, что то же самое,     y
n ≤ 6.  Аналогично, x ≥5m  или, что то же самое, m ≤ x .
    5  Также заметим, что в каждой строке есть хотя бы одна синяя клетка и 5 красных, n≥ 6.  Аналогично m ≥7.

Сравним числа 6x  и 5y.

Пусть 6x ≥5y,  то есть x≥ 5y.
   6  В каждом столбце присутствуют хотя бы 6 синих клеток. Из взятого в качестве предположения неравенства следует, что в каком-то столбце количество красных клеток хотя бы 5
6y  от количества синих, то есть хотя бы 5, поэтому общее количество закрашенных клеток в данном столбце хотя бы 11, откуда m ≥11  и, следовательно, x ≥55.  Если y ≥ 65,  x+ y ≥ 120  и оценка доказана. Предположим, y < 65,  тогда n< 11,  то есть не превосходит 10.

Но раз n≤ 10,  а x≥ 55,  в каком-то из наших не более чем 10 столбцов присутствуют хотя бы 6 красных клеток. Так как в нём должно быть ещё и 6 синих, мы получаем, что общее количество закрашенных клеток в этом столбце хотя бы 12, то есть, m≥ 12  и x≥ 5m≥ 60.  Тогда, чтобы x+ y  было меньше 120, необходимо y ≤ 59.  Продолжим эти рассуждения.

Поскольку y ≤ 59,  значит n ≤9.  Значит, в каком-то столбце присутствуют хотя бы 60
-9 ,  то есть хотя бы 7 красных клеток, откуда m ≥ 7+ 6= 13,  x ≥5m ≥ 65,  y ≤54.

Поскольку x≥ 65,  в каком-то столбце присутствуют хотя бы 65
9-,  то есть хотя бы 8 красных клеток, откуда m ≥8+ 6= 14,  x ≥5m ≥ 70,  y ≤49.

Поскольку y ≤ 49,  значит, n ≤ 8.  Значит, в каком-то столбце присутствуют хотя бы 65-,
8  то есть хотя бы 9 красных клеток, откуда m ≥ 9+ 6= 15,  x ≥5m ≥ 75,  y ≤44.

Поскольку y ≤ 44,  значит, n ≤ 7.  Значит, в каком-то столбце присутствуют хотя бы 75,
7  то есть хотя бы 11 красных клеток, откуда m ≥ 11+6 =17,  x≥ 5m ≥85,  y ≤ 34.

Поскольку y ≤ 34,  значит, n≤ 5.  Значит, в каком-то столбце присутствуют хотя бы 85,
 6  то есть хотя бы 15 красных клеток, откуда m ≥15+ 6= 21,  x≥ 5m≥ 105,  y ≤ 14.  Отсюда получаем, что n≤ 2,  что противоречит доказанному ранее.

Аналогично разбираем случай, когда 6x< 5y,  то есть x< 5y.
   6  В каждой строке присутствуют хотя бы 5 красных клеток. Из взятого в качестве предположения неравенства следует, что в какой-то строке есть хотя бы 6 синих клеток, то есть общее количество закрашенных клеток в данной строке хотя бы 11, откуда n≥ 11  и, следовательно, y ≥66.  Если x ≥54,  x+ y ≥ 120  и оценка доказана. Предположим, x <54,  тогда m< 11,  то есть не превосходит 10.

Но раз m ≤ 10,  а y ≥66,  в какой-то из наших не более чем 10 строк присутствуют хотя бы 7 синих клеток. Так как в ней должно быть ещё и 5 красных, мы получаем, что общее количество закрашенных клеток в этой строке хотя бы 12, то есть, n ≥12  и y ≥ 6n≥ 72.  Тогда, чтобы x +y  было меньше 120, необходимо x ≤47.  Продолжим эти рассуждения.

Поскольку y ≥ 72,  в какой-то строке присутствуют хотя бы 72-,
9  то есть хотя бы 8 синих клеток, откуда n ≥8 +5= 13,  y ≥ 6n≥ 78,  x ≤41.

Поскольку x≤ 41,  значит m ≤ 8.  Значит, в какой-то строке присутствуют хотя бы 78,
8  то есть хотя бы 10 синих клеток, откуда n≥ 10+ 5= 15,  y ≥6n ≥90,  x≤ 29.  Отсюда получаем, что m ≤ 5,  что противоречит доказанному ранее.

Таким образом, мы разобрали оба случая и доказали, что ситуация, в которой x+ y < 120  невозможна.

Ответ: 120

Ошибка.
Попробуйте повторить позже

Задача 8#88135

Сумма двух различных натуральных делителей натурального числа n  равна 100. Какое наименьшее значение может принимать число   n?  (Среди указанных делителей могут быть единица и само число.)

Подсказки к задаче

Подсказка 1

Предположим, что мы взяли какие-то два делителя числа n числа и сложили их. Если каждый из этих двух делителей меньше n, то он меньше n “в сколько-то раз”. Какой вывод мы тогда сможем сделать для их суммы?

Подсказка 2

Да, в таком случае сумма этих двух делителей, равная ста, будет меньше, чем n, следовательно, n больше ста. Это не очень удовлетворительный результат, потому что первый пример, приходящий в голову — 99+1 — это пример меньше, чем на 100. Какой вывод можно отсюда сделать?

Подсказка 3

Тогда получается, что один из делителей заведомо равен самому числу. В таком случае, введя d как меньший делитель, можно записать условие в виде достаточно простого выражения!

Подсказка 4

Из нашей записи получится, что n/d+1 должно быть делителем числа 100. При этом для каждого фиксированного d чем больше n/d, тем больше n. Отсюда и получим искомый ответ!

Показать ответ и решение

Если один из наших делителей — само число n  , а второй — некоторое число d  и n= dk  , то мы получаем

100= d+ dk =d(k+ 1)

        n     (   1)
100= n+ k = n⋅ 1+ k

Чем k  больше, тем и само n  больше.

Наименьшее k >1  такое, что k+ 1  является делителем 100, это 3. При таком k  получаем n =75  .

Если же n  нет среди двух наших делителей, то n  n
2 + 3 ≥100  , откуда n ≥120  .

Ответ: 75

Ошибка.
Попробуйте повторить позже

Задача 9#88876

Клетчатая доска 9× 9  вся заполнена фишками. Петя и Вася играют в следующую игру: за один ход можно выбрать горизонталь или вертикаль, на которой ещё остались фишки, и снять оттуда все оставшиеся фишки. Выигрывает игрок, после хода которого доска опустеет. Первым ходит Петя. Кто выиграет при правильной игре?

Показать ответ и решение

Заметим, что строки и столбцы можно переставлять, не влияя на ход игры. Значит, можно считать, что каждый раз убирается крайняя строка или крайний столбец, а оставшиеся фишки образуют прямоугольник.

Вася будет действовать так: если Петя убирает строку, Вася убирает столбец, и наоборот. Таким образом, оставшиеся фишки всегда будут образовывать квадрат. Так будет продолжаться, пока оставшиеся фишки не образуют квадрат 2×2.  После этого Петя убирает две фишки, а Вася — две оставшиеся.

Ответ: Вася
Рулетка
Вы можете получить скидку в рулетке!