Тема ИТМО - задания по годам

ИТМО 2021

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела итмо - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#40271

Кубический многочлен имеет три корня. Наибольшее его значение на отрезке [4;9]  достигается при x =5  , а наименьшее при x =7  . Найдите сумму корней многочлена.

Источники: ИТМО - 2021, 11.1 (см. olymp.itmo.ru)

Показать ответ и решение

Пусть многочлен имеет вид P (x)= ax3+ bx2+ cx+ d  , откуда его производная P′(x)= 3ax2 +2bx+ c  .

Так как наименьшее и наибольшее значения достигаются во внутренних точках отрезка, то по необходимому условию экстремума производная в этих точках равна нулю, так что  ′
f(x)  имеет корни 5  и 7  , так что можно записать  ′
P (x)= 3a(x − 5)(x − 7).

По теореме Виета сумма корней многочлена P(x)  равна   b
− a  , а сумма корней многочлена  ′
P (x)  равна   2b-
− 3a = 5+7 =12  , откуда находим   b
− a =18  .

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#99641

Найдите сумму натуральных чисел от 1  до 3000  включительно, имеющих с числом 3000  общие делители, большие 1.

Источники: ИТМО - 2021, 11.2 (см. olymp.itmo.ru)

Показать ответ и решение

 3000= 23 ⋅3 ⋅53  , то есть нас интересуют числа, деляющиеся на 2,3  или 5.  Найдём сначала количество таких чисел. Для этого воспользуемся принципом включений и исключений. Чётных чисел от 1  до 3000  ровно 3000
 2 = 1500  , кратных трём — 3000
 3  =1000  , кратных пяти — 3000
 5  =600  . Однако, если просто сложить числа 1500,1000 и 600 , мы посчитаем некоторые числа 2 раза, а именно, числа, делящиеся на 2⋅3= 6,2⋅5= 10  и 3⋅5= 15  , поэтому из полученной суммы надо вычесть 3000
 6 =      3000
500,10 = 300  и 3000
15 = 200  . Однако, 1500+1000+ 600− 500− 300− 200=2100  всё ещё неправильный ответ, Поскольку в этом выражение числа, имеющие все три простых множителя, сначала считаются три раза, а потом их количество вычитается опять же три раза, поэтому надо снова добавить эти числа. Количество таких чисел   3000
− 2⋅3⋅5 =100  , значит, количество чисел, имеющих с 3000  общие делители и не превосходящих его, это 2200.

Заметим теперь, что если какое-то число x  имеет с числом N  общие делители, то число N − x  тоже имеет с N  те же самые общие делители. Значит, все интересующие нас числа, кроме чисел 1500  и 3000,  разбиваются на пары с суммой 3000  (числу 3000 в пару пришлось бы сопоставить 0,  а числу 1500− само себя). Таких пар получаается 1099,  поэтому итоговый ответ 1099⋅3000+ 3000+ 1500 =  1100⋅3000+ 1500 =3301500.

Замечание.

Числа, меньшие 3000  и взаимно простые с ним разбиваются на пары таким же образом, поэтому участники, знакомые с функцией Эйлера, могли получить формулу для ответа в виде

N(N +-1)−-N ⋅φ(N).
       2
Ответ:

 3301500

Ошибка.
Попробуйте повторить позже

Задача 3#99642

Палиндром — это слово, которое не меняется, если в нём переставить буквы в обратном порядке, например abcba  . Сколько различных 11  -буквенных слов можно составить из букв a,b,c,d,e  так, чтобы они не содержали палиндромов длины больше 1?

Источники: ИТМО - 2021, 11.3 (см. olymp.itmo.ru)

Показать ответ и решение

Заметим, что две центральные буквы любого палиндрома чётной длины одинаковы, то есть образуют палиндром длины два. Точно так же три центральные буквы палиндрома нечётной длины образуют палиндромы длины три. Таким образом, отсутствие в слове палиндромов равносильно отсутствию палиндромов длины 2  и 3.  Это, в свою очередь, равносильно тому, что любые три подряд идущие буквы в слове различны.

Первая буква в слове выбирается пятью способами, для следующей остаётся 4  способа. Каждая из последующих букв не может совпадать с двумя предыдущими, поэтому для неё остаётся 3  способа. Все эти числа надо перемножить, поэтому мы получаем

5(5 − 1)(5 − 2)11−2 = 393600
Ответ:

 393660

Ошибка.
Попробуйте повторить позже

Задача 4#99644

Положительные числа x,y  и z  таковы, что xyz = 8  и x≤ z  . Докажите неравенство

x   y  z  2x
2 + 3 + 6 ≥ z .

Источники: ИТМО - 2021, 11.4 (см. olymp.itmo.ru)

Показать доказательство

Заметим, что сумма коэффициентов в левой части равна единице. Применим неравенство для среднего арифметического и среднего геометрического для чисел x,x,x,y,y,z  :

x  y   z  6∘-----  6∘ ------x-  ∘6x-
2 + 3 + 6 ≥ x3y2z = x2y2z2⋅z =2  z

Поскольку x≤ z,xz < 1  и, следовательно, ∘ --
6 xz ≥ xz.

Ошибка.
Попробуйте повторить позже

Задача 5#99645

Вася выбрал четыре числа и для каждой пары вычислил логарифм большего по основанию меньшего. Получилось шесть логарифмов. Четыре из них равны 15,20,21  и 28.  Какие значения может принимать наибольший из всех шести логарифмов?

Источники: ИТМО - 2021, 11.5 (см. olymp.itmo.ru)

Показать ответ и решение

Пусть четыре исходные числа - это x≤ y ≤ z ≤ t  . Обозначим a =log y,b= log z,c= log t
     x       y       z  . Тогда log z = ab,log t= bc,log t= abc
  x       y       x  , то есть наши шесть логарифмов равны a,b,c,ab,bc  и abc.  Наибольший из них при этом abc  и именно его нам надо найти.

Заметим, что среди наших четырёх логарифмов ни один не является произведением двух других. Это значит, что в каждой тройке (a,b,ab),(b,c,bc),(a,bc,abc),(ab,c,abc)  отсутствует хотя бы одно число. Каждое из шести чисел встречается ровно в двух из этих троек, значит, чтобы “разрушить” все тройки, надо удалить два числа, которые вместе в одной тройке не встречаются, то есть, числа, которых мы не знаем, это либо a  и c  , либо b  и abc  , либо bc  и ab  .

Соответственно, у нас есть одна из четвёрок (b,ab,bc,abc),(a,c,ab,bc)  и (a,b,c,abc)  . Третий вариант невозможен, потому что ни одно из наших четырёх чисел не является произведением трёх других. Для того, чтобы четвёрка чисел могла соответствовать первому или второму вариантам, необходимо и достаточно, чтобы произведение двух чисел было равно произведению двух оставшихся. Это условие выполняется: 15⋅28= 20⋅21  .

В первом случае мы имеем b⋅abc=ab⋅bc  , и abc  — это наибольшее из наших четырёх чисел. Во втором случае a⋅bc= b⋅ac  и abc  — это как раз искомое произведение. Значит, мы имеем два возможных ответа: 28  и 420.

Ответ:

 28;420

Ошибка.
Попробуйте повторить позже

Задача 6#99648

Четырёхугольник ABCD  описан вокруг окружности с центром в точке O.  K, L,M, N  — точки касания сторон AB,BC,CD  и AD  соответственно, KP, LQ,MR  и NS  — высоты в треугольниках OKB, OLC,OMD, ONA.  OP = 15,OA = 32,OB = 64.  Найдите длину отрезка QR.

Источники: ИТМО - 2021, 11.6 (см. olymp.itmo.ru)

Показать ответ и решение

PIC

Треугольники OKA  и ONA  — прямоугольные с общей гипотенузой и катетом, равным радиусу окружности, поэтому они равны. Значит, их высоты падают в одну точку общей гипотенузы, то есть KS  — высота в треугольнике OKA  . Поэтому точки S  и P  лежат на окружности с диаметром OK  . Аналогично точки R  и S  лежат на окружности с диаметром ON  . Поскольку диаметры этих окружностей равны, градусные меры дуги OS  в этих окружностях совпадают. В первой окружности на эту дугу опирается ∠OP S  , а во второй - ∠ORS  , значит, эти углы равны. (Именно равны, а не дополняют друг друга до 180∘ , потому что точки P  и R  лежат по разные стороны от прямой OS  , а окружности симметричны относительно неё).

Аналогично ∠OP Q= ∠ORQ  . Сложив это с предыдущим равенством, получим ∠SPQ = ∠SRQ  . Аналогично ∠PSR =∠P QR  , то есть четырёхугольник PRQS  — параллелограмм.

_________________________________________________________________________________________________________________________________________________________________________________

Замечание.

Можно понять, что вершины четырёхугольника PQRS  инверсны вершинам четырёхугольника ABCD  относительно нашей окружности, то есть мы только что повторили доказательство теоремы о том, что четырёхугольник, инверсный описанному, является параллелограммом.

_________________________________________________________________________________________________________________________________________________________________________________

Значит, вместо длины отрезка QR  мы можем найти длину отрезка PS  .

По свойству высоты прямоугольного треугольника, OK2 = OS ⋅OA  . Аналогично OK2 =OP ⋅OB  , откуда OS-= OP-= k
OB   OA  . Кроме того, угол ∠O  в треугольниках OBA  и OSP  общий, поэтому они подобны с коэффициентом k  . Значит,

                        (∘ --2-----2  ∘---2----2)
PS = k⋅AB =k(AK + KB)= k   OA − OK  +  OB  − OK   =

  OP (∘ ------------ ∘ -----------)
= OA-   OA2− OB ⋅OP +  OB2− OB ⋅OP  =30
Ответ:

 30

Ошибка.
Попробуйте повторить позже

Задача 7#99649

Два куба с ребром 12∘4-8
    11  имеют общую грань. Сечение одного из этих кубов некоторой плоскостью — треугольник площади 16.  Сечение другого той же плоскостью — четырёхугольник. Какое наибольшее значение может принимать его площадь?

Источники: ИТМО - 2021, 11.7 (см. olymp.itmo.ru)

Показать ответ и решение

Пусть наши кубы — это ABCDA  B C D
      1 1 1 1  и ABCDA  B C D
      2 2 2 2  с общей гранью ABCD  . Пусть также треугольное сечение первого куба — это KLM  , где точка K  лежит на AA1  , точка L  на AB  , а точка M  — на AD  . Одна из сторон четырёхугольного сечения второго куба — отрезок LM  . Две другие — продолжения отрезков KL  и KM  на грани второго куба, назовём эти отрезки LP  и MQ  . Чтобы сечение было четырёхугольным, точки P  и Q  должны находиться на одной грани второго куба, а это может быть только грань A2B2C2D2  .

Значит, четырёхугольное сечение второго куба — это трапеция LMQP  . Нахождение её наибольшей площади равносильно нахождение наибольшей площади треугольника KP Q  , который подобен треугольнику KLM  . Обозначим этот коэффициент подобия     KP
k = KL-  . Тогда  2  SKPQ   SKPQ
k = SKLM-= --S--  . То есть наша задача равносильна задаче о нахождении максимального коэффициента подобия.

С другой стороны, по теореме Фалеса     KP  KA    KA+AA       AA
k = KL-=-KA2= --KA--2= 1+ KA2  . То есть коэффициент подобия тем больше, чем меньше KA  , а значит, наша задача — минимизировать KA  , или, что то же самое, минимизировать KA2  .

Пусть у нас есть треугольник, вершины которого расположены на трёх рёбрах куба, выходящих из одной точки, на расстояниях x,y  и z  . Найдём формулу площади этого треугольника. Это можно делать по-разному, например, через векторное произведение, или посчитав двумя способами площадь тетраэдра, образованного вершинами треугольника и вершиной куба, но мы вычислим эту площадь по формуле Герона, зная стороны треугольника:    ∘ ------   √------
a =  x2+ y2,b=  x2+ z2  и    ∘ ------
c=   y2+z2  .

     ∘---------------------------------  ∘ ---------------------
 S = -(a+-b+c)(a-+b−-c)(c+-(b−-a))(c− (b−-a))=--((a+-b)2-− c2)(c2−-(b−-a)2) =
                     4                        ∘ ----4------------
 ∘-(a2+b2+-c2− 2ab)(c2−-a2− b2+-c2-+2ab)        --4a2b2−-(a2-+b2−-c2)2
=                 4                 =         ◟--------4◝◜--------◞         =
                                      Эту формулу тожеиногданазывают формулойГерона

  ∘-------------------------------------------  ∘ ----------------------------
= -4-(x2+-y2)(x2+-z2)−-((x2+-y2)+-(x2+z2)−-(y2+-z2))2= --4x4+4x2y2+4x2z2+-4y2z2−-(2x2)2 =
                       4         ∘--------------              4
                               = -x2y2+-x2z2+-y2z2-
                                        2

Посмотрим на эту формулу для треугольника KPQ  и отрезков x= A P,y = A Q,z = A K
    2      2      2  . С одной стороны, нам надо минимизировать z  , а с другой - максимизировать площадь. Очевидно, для этого x  и y  должны быть максимальны, то есть равны ребру ℓ  .

Как мы знаем,    KA+AA2-  KA+-ℓ
k=   KA   =  KA  , то есть KA ⋅k= KA + ℓ  , откуда

KA = -ℓ--, KA2 = KA +ℓ=-kℓ-
     k− 1              k − 1

Подставляя эти значения в формулу, получаем:

       1∘ ------(-kℓ-)2-----(-kℓ-)2-   ℓ2  ∘ -----------
SKPQ = 2  ℓ4+ ℓ2⋅ k−-1  + ℓ2⋅ k−-1  = 2(k− 1) (k − 1)2+2k2

Соответственно,

            ∘ -----------
S = SKPQ-= ℓ2--(k− 1)2+-2k2,
     k2       2k2(k− 1)

откуда

4S2   (k− 1)2+ 2k2  1      2
ℓ4-= -k4(k−-1)2--= k4 + k2(k−-1)2

Правая часть этого равенства убывает при k> 1  , а значит, данное уравнение на k  имеет не больше одного решения. Конкретное решение в большинстве вариантов легко подбирается из этого равенства, так как оно целочисленное.

При      ∘--
l= 124181,S = 16  мы получаем уравнение

                   2
-14 +-2--2--2 = 4⋅4168-= -114,
k   k (k− 1)    12 ⋅11   2⋅3

откуда сразу возникает желание проверить k= 3  , что оказывается верным.

Ответ получается как разность площадей двух треугольников и равен (k2− 1)S =8 ⋅16= 128.

Ответ:

 128

Ошибка.
Попробуйте повторить позже

Задача 8#99651

Гензель и Гретель играют в игру, Гензель ходит первым. Они по очереди ставят фишки на клетчатую доску 7× 8  (7  строк и 8  столбцов). Каждый раз, когда Гретель ставит фишку, она получает 4  очка за каждую фишку, уже стоящую в той же строке и 3  очка за каждую фишку, уже стоящую в том же столбце.

На одной клетке может стоять только одна фишка. Игра заканчивается, когда все клетки доски заполнены.

Какое наибольшее количество очков может заработать Гретель вне зависимости от действий Гензеля?

Источники: ИТМО - 2021, 11.8 (см. olymp.itmo.ru)

Показать ответ и решение

Давайте скажем, что Гензель тоже получает очки по тому же принципу, что и Гретель. В таком случае, каждая пара клеток в одной строке даст в итоге какому-то из игроков 4  очка, а каждая пара клеток в одном столбце — 3  очка. В одной строке можно найти 8⋅7
2 = 28  пар клеток, а в одном столбце — 7⋅6
 2 =21  пару. Общая сумма очков, набранных обоими игроками в конце игры, будет равна

7⋅28⋅4+ 8⋅21 ⋅3 =1288.

Приведём стратегию за Гретель, позволяющую ей каждый ход получать на 4  очка больше, чем перед этим Гензель. Для этого разобъём каждую строку на 4 прямоугольника 1×2.  Как только Гензель ставит фишку в одну из клеток прямоугольника, Гретель тут же занимает вторую. Столбцы, в которых находятся эти клетки, идентичны из-за стратегии Гретель, а в строке к моменту её хода находится на одну фишку больше — ровно на ту, которую поставил Гензель.

С другой стороны, если Гензель будет каждый раз выбирать клетку, которая приносит максимальное количество очков, Гретель своим следующим ходом сможет набрать максимум на 4  очка больше, так как добавлением одной фишки Гензель повышает “ценность” каждой из оставшихся клеток не более, чем на 4.

Каждый игрок сделает 28  ходов и, при правильной игре, Гретель наберёт на 112  очков больше. Зная сумму и разность двух чисел, можно легко найти сами числа, это 700  и 588.

Во всех остальных вариантах второй игрок всегда получает большее количество очков за фишку в ряду, длина которого чётна, поэтому описанная стратегия за второго игрока всегда работает.

Ответ:

 700

Рулетка
Вы можете получить скидку в рулетке!