БИБН - задания по годам → .01 БИБН до 2020
Ошибка.
Попробуйте повторить позже
На боковых сторонах и
трапеции
взяты точки
и
соответственно, такие, что
и
.
Докажите, что
.
Подсказка 1
Как мы хотим доказывать равенство отрезков CM и MD? У нас на картинке уже отмечены два уголка, а также есть параллельные прямые. Может, тогда попробовать доказать равенство углов MCD и MDC...
Подсказка 2
Что можно сказать про четырехугольник AMND? В нём мы уже знаем что-то про уголочек MDN, а уголочек MAN совпадает с углом BAN...
Подсказка 3
Т.к. BN равно AN, равны углы BAN и ABN, а ABN равен CDM по условию. Тогда четырехугольник AMND вписан. Что мы можем сказать про четырехугольник MBCN, если вспомнить, что AD параллельна BC...
Подсказка 4
Т.к. AD параллельна BC, углы CBА и BAD в сумме равны 180°. Т.к. AMND вписанный, MAD+MND=180°. Тогда CBM=CBA=180°-BAD=180°-MAD=MND. Это означает, что MBCN- вписанный четырехугольник. Осталось только перекинуть уголок MBN на MCN и завершить решение.
Из равенства следует, что
в равнобедренном треугольнике
.
Тогда по условию задачи и значит? около четырехугольника
можно описать окружность. Поэтому
.
В трапеции углы при боковой стороне дают в сумме . Таким образом, в четырехугольнике
сумма углов при вершинах
и
тоже равна
и поэтому около
можно описать окружность. Следовательно,
, а значит, треугольник
тоже равнобедренный, и
.
Ошибка.
Попробуйте повторить позже
Дан треугольник , вписанный в окружность
. Точка
— основание перпендикуляра из точки
на прямую
,
точка
— основание перпендикуляра из точки
на касательную к
, проведенную через точку
. Докажите, что
.
Источники:
Рассмотрим четырехугольник . Около него можно описать окружность (с диаметром
, так как углы
и
—
прямые). Значит,
(по свойству вписанных углов). Далее, угол между касательной через точку
и хордой
также
равен углу
(по свойству угла между касательной и хордой). Таким образом, отрезки
и
имеют одинаковые углы с
касательной и поэтому параллельны.
Ошибка.
Попробуйте повторить позже
Источники:
Подсказка 1
Придумывая пример, имеет смысл разбивать на каждом шаге алгоритма все числа на какие-то удобные «блоки», в которых можно несложно получить именно то число, которое хотим. Получить числа меньше 0 невозможно, поэтому попробуем получить 0 или 1. Работать с большими числами неудобно, к каким меньшим числам можно привести весь наш числовой ряд на доске?
Подсказка 2
К единичкам!(как?). Осталось лишь исследовать ряд единичек и осознать, как получить 0. А что если 0 получить нельзя? Как это доказать? Быть может, какое-то свойство на каждом шагу сохраняется?
Подсказка 3
Обратим внимание на четность суммы всех чисел. Какая она и какой может стать?
(a) Достаточно привести алгоритм получения нуля, поскольку меньше получить невозможно. Итак, сначала поделим числа кроме единицы
на пары написав в них разности, получим набор
из
единиц, включая первоначальную.
Далее разбиваем числа на пары и в каждой паре получаем в качестве разности
затем с нулями можно делать что
угодно.
(b) Пример на получение единицы можно вывести из предыдущего пункта, только делить будем на пары
откуда получится
единиц, то есть помимо
нулей в разности получится дополнительная единица — далее от неё уже никак не
избавиться, можно просто по очереди вычесть из неё все нули.
Остаётся показать, что ноль получить не выйдет. Действительно, изначально сумма всех чисел нечётна.
При применении операции
в этой сумме её чётность не поменяется, поскольку
значит, её чётность не
меняется. Тогда и оставшееся число будет нечётным и не равно нулю.
(a) ;
(b) .
Ошибка.
Попробуйте повторить позже
Существует ли -угольная пирамида, на ребрах которой можно выбрать направления (стрелки) так, чтобы сумма всех
векторов-ребер
равнялась нулевому вектору?
Подсказка 1
Кажется, что работать с векторами в пространстве — затея не самая приятная... Хотелось бы как-то перенестись в пространство меньшей размерности, может быть, на какую-нибудь прямую, где уже будет легче работать! Можно ли это сделать?
Подсказка 2
Естественно, ведь векторы можно проецировать! Тогда можно выбрать «хорошую» прямую, на которую будет удобно проецировать... Высота пирамиды здорово подойдёт! Что же станет с суммой векторов после проецирования?
Подсказка 3
Останется только сумма равных по модулю проекций девяти ненулевых векторов, которые являются боковыми рёбрами. Раз сумма векторов должна быть равна нулевому вектору, то и сумма их проекций должна быть равна нулю. Возможно ли такое, учитывая предыдущие наблюдения?
Подсказка 4
Эти девять проекций, конечно, равны по модулю, но могут иметь разные знаки. И их сумма равна нулю... Осталось сделать выводы про количества положительных и отрицательных проекций!
Рассмотрим систему координат с центром в основании высоты пирамиды, одну из осей направим вдоль самой высоты. Тогда длина проекции на эту ось, то есть соответствующая координата, каждого вектора будет равна нулю для рёбер из основания и иметь одинаковое по модулю значение для боковых рёбер — длина высоты с положительным или отрицательным знаком.
Чтобы сумма векторов была нулевой необходимо, чтобы сумма этих координат (соответствующая координата суммы) была равна нулю.
Пусть длина высоты равна и
координат из
ненулевых положительны, тогда эта координата равна
Но поскольку по чётности, а также
из условия, значит, нулевой сумма векторов-рёбер быть не
может.
нет