Бельчонок - задания по годам → .06 Бельчонок 2024
Ошибка.
Попробуйте повторить позже
Три человека независимо задумали по одному целому числу от до
. Какова вероятность, что произведение этих трёх чисел делится на
?
Обозначим событие Произведение
чисел не делится на
,
Среди
чисел нет
Среди
чисел нет чётного
Тогда
Вероятность искомого события равна
Ошибка.
Попробуйте повторить позже
Известно, что числа — целые. Обязательно ли являются целыми все три числа
Рассмотрим числа . По условию их сумма целая, их произведение равно
— целое, сумма их попарных произведений
равна
— целая. Значит, мы можем составить приведённый многочлен с целыми коэффициентами и корнями
:
Осталось заметить, что корни рациональны как отношения целых чисел. Если целочисленный многочлен имеет рациональный
корень , то его старший коэффициент делится на
. Поскольку наш многочлен приведённый, корни являются
целыми.
Ошибка.
Попробуйте повторить позже
По кругу растет шесть деревьев. Утром на каждом дереве сидел один бельчонок. Вечером опять на каждом дереве сидел один из тех же шести бельчат, ни один бельчонок не сидел на том же самом дереве, и не сидел на дереве, которое было соседним с тем, которое он занимал утром. Сколькими способами это можно было сделать?
Любой рассадке вечером можно сопоставить рассадку, в которой белка, сидевшая на дереве с номером (нумерация по часовой стрелке),
сидит на дереве
по модулю 6 (то есть просто белку переместили на противоположное место). Нетрудно видеть, что это
противоположное место является либо тем местом, на котором белка сидела утром, либо соседним с ним. Значит, можно решить задачу, в
которой каждая белка либо осталась на своём месте, либо перешла на соседнее.
Пусть изначально белки сидели в порядке . Рассмотрим случаи:
Все остаются на своих местах. Тогда есть только один случай (
).
Если перемещается вправо на место
, у
есть два варианта действий.
может переместиться влево(на место
) или
переместиться вправо на место
.
Рассмотрим движение по кругу. Если
перемещается на место
, то единственный способ для
— переход к
, переход
к
, переход
к
и переход
к
, в результате чего достигается
. Каждый бельчонок может также двигаться
влево(
). Таким образом, тут два случая.
Некоторые бельчата из соседних пар
,
,
меняются местами, оставаясь в той же паре. Если
перемещается на место
,
перемещается на место
.
может остаться на месте, или переместиться на
,
может остаться на месте, или переместиться
на
. Это даёт
случаев, но бельчата не могут все оставаться на месте, поскольку мы уже посчитали такую
возможность в случае
, и, следовательно, здесь
случаев. Кроме этого, могут быть пары
что даёт еще
случаев.
Меняются местами не в соседних парах, а в парах, разделённых одним бельчонком. Если бы
и
поменялись местами,
и
могли бы поменяться местами, и это не было бы учтено предыдущими группировками. При этом два бельчонка, разделяющие пары, сидят
на прежних местах. Это может происходить в трёх случаях (
и
не движутся,
и
не движутся,
и
не
движутся).
Всего случаев .
Ошибка.
Попробуйте повторить позже
На окружности по часовой стрелке поставлены точки ,
,
,
,
. Известно, что
. Пересечение отрезков
и
обозначим через
. На продолжении отрезка
за точку
выбрали точку
так, что
.
На продолжении отрезка
за точку
выбрали точку
так, что
. Докажите, что прямые
и
перпендикулярны.
Отметим равные углы: как вписанные углы, отсюда следует, что
Рассмотрим треугольники
и
У них равны две стороны и угол между этими сторонами. Следовательно, эти треугольники равны, тогда
Тогда нужно
доказать , что
является частью высоты в равнобедренном треугольнике.
Рассмотрим вписанные четырехугольники и
Из вписанности получаем
и
Рассмотрим треугольники
и
У них равны две стороны и угол между этими сторонами. Следовательно, эти
треугольники равны, тогда
Используя аналогичные рассуждения для треугольников
и
получаем что
В итоге получили, что точка равноудалена от вершин треугольника
то есть является центром описанной
окружности равнобедренного треугольника. Следовательно,
является частью высоты треугольника
то есть
Ошибка.
Попробуйте повторить позже
Найдите все пары натуральных чисел, для которых
Во-первых, покажем, что и
взаимно просты. Пусть это не так, тогда они делятся на какое-то простое число
, а значит и
делится на
, но это не так.
Во-вторых, покажем, что и
— точные кубы. Число
— куб,
— куб, значит и
— куб. Если некоторое простое число
входит в
в степени
, то оно либо входит в этой же степени в
, а в
— в нулевой, либо наоборот, так как
. Таким
образом,
и
— кубы, ведь все простые множители входят в них в
степени.
Пусть , тогда извлечём из равенства кубический корень и получим:
Зафиксируем и сравним с ней
. Ясно, что
, потому что иначе правая часть отрицательна, а левая — положительна.
Перепишем равенство в виде:
Нетрудно видеть, что
То есть равенство возможно лишь когда , откуда
. Притом эта пара является решением при любом
натуральном
.
Ошибка.
Попробуйте повторить позже
Если сегодня плохая погода, то завтра с вероятностью 1 будет хорошая погода. Если сегодня хорошая погода, то завтра хорошая погода будет с вероятностью 0,4. Какова вероятность, что 7 марта будет хорошая погода, если 3 марта плохая и хорошая погоды равновероятны? (Погода одинаковая весь день и может быть только плохой или хорошей).
Обозначим вероятность хорошей погоды в день
считая
марта за первый день. Тогда
(Если в -й день погода плохая, то в
-й она точно хорошая, а если хорошая, то в
-м дне будет хорошей с вероятностью
).
По условию
. Находим последовательно
0,6088
Ошибка.
Попробуйте повторить позже
Многочлен имеет корни
. Многочлен
Найдите
Пусть . Нетрудно видеть, что при
верно
, то есть достаточно найти число
Если поделить столбиком на
, получим, что
. Значит, нужная нам сумма равна
По теореме Виета сумма корней равна , сумма их попарных произведений равна
. Подставляя это, получаем ответ
.
Ошибка.
Попробуйте повторить позже
Сколько двузначных натуральных чисел нельзя представить в виде суммы двух палиндромов?
Палиндром - число, читающееся одинаково слева направо и справа налево. Однозначные числа также считаются
палиндромами. Многозначные палиндромы не могут начинаться с 0.
Если число является палиндромом, то числа
допускают нужное представление. Поэтому числа от
до
могут быть представлены нужным образом:
Если число двузначное и является палиндромом, то число
также палиндром, и может быть представлено как
.
Например, если
. Поскольку разность между соседними двузначными палиндромами равна
, это означает,
что все такие числа допускают нужное представление. Осталось рассмотреть числа вида
, где
— палиндром, то есть
числа
. Пусть число
. Если и
и
двузначные палиндромы, тогда правая часть
делится на
, а левая нет. Значит, одно из слагаемых должно быть однозначным, то есть числом из набора
. Но
разность
и любого числа из набора не кратна
. Числа
нельзя представить как сумму двух
палиндромов.
Ошибка.
Попробуйте повторить позже
Окружности и
пересекаются в точках
и
Прямая
расположена ближе к
, чем к
, и является общей касательной
окружностей
и
, касаясь их соответственно в точках
и
. Через точку
проведена параллельно касательной
прямая, пересекающая
в точке
в точке
. Прямые
и
пересекаются в точке
прямые
и
пересекаются в точке
прямые
и
пересекаются в точке
Докажите, что
— вписанный
четырёхугольник.
Пусть а
Тогда смежные с ними
______________________________________________________________________________________________________________________________________________________
Замечание. Точки и
не подписаны на чертеже, потому что в решении их использовать не будем.
_________________________________________________________________________________________________________________________________________________________________________________
В силу вписанности и
получаем
Но и
смежные, поэтому
Следовательно, так что
вписанный.
Ошибка.
Попробуйте повторить позже
Найдите множество всех целых значений суммы
где и
— произвольные натуральные числа.
Пусть — натуральное число. Тогда
Если не делится на
, то
делится на
. Но в таком случае все члены равенства, кроме
, делятся на
, а
делится только на
, что невозможно. Значит,
делится на
, то есть
для некоторого натурального числа
.
Имеем
откуда делится на
или
делится на
.
_________________________________________________________________________________________________________________________________________________________________________________
Пусть . Тогда
откуда делится на
. Но в таком случае
делится и на
, то есть
для некоторого натурального
.
Теперь имеем
, откуда
. Ясно, что число
будет целым только при
, при этом
.
_________________________________________________________________________________________________________________________________________________________________________________
Пусть . Тогда
. Как и выше, отсюда следует, что
делится на
,то есть
для некоторого
натурального
. Теперь имеем
, откуда
делит
, то есть
. При
получаем
невозможные равенства
соответственно. При число
, откуда
— делитель
, при этом
то есть . Следовательно,
, и тогда
.
Ошибка.
Попробуйте повторить позже
Дан равносторонний треугольник на сторонах
и
которого выбраны точки
и
так, что
—
точка пересечения отрезков
и
Найдите градусную меру угла
Первое решение.
Пусть — высота и медиана треугольника
. Проведём через вершину
параллельно
прямую и обозначим точку её
пересечения с прямой
через
Треугольники и
подобны с коэффициентом
, откуда
. Поэтому
— прямоугольник, то есть
. Заметим, что треугольники
и
равны по двум сторонам и углу. Тогда
. Значит,
четырёхугольник
— вписанный, откуда
.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Проведём в треугольнике высоту
.
Так как , получим
. Поэтому треугольники
и
подобны, откуда
.
Заметим теперь, что
и
. Тогда треугольники
и
равны
по двум сторонам и углу. Поскольку
, четырёхугольник
вписанный, откуда
.