Изумруд - задания по годам → .04 Изумруд 2022
Ошибка.
Попробуйте повторить позже
В неравнобедренном треугольнике точка
— середина стороны
— точка пересечения медиан,
— центр вписанной
окружности. Известно, что
. Докажите, что
.
Источники:
Подсказка 1
Нужно как-то использовать условие про угол, но углы с серединами сторон обычно очень плохо считаются, нужно как-то использовать, что угол именно прямой...
Подсказка 2
Давайте вспомним, что внутренняя и внешняя биссектрисы одного угла перпендикулярны, это наталкивает нас на мысль рассмотреть...
Подсказка 3
Центр I_a вневписанной окружности! Ведь тогда мы получим, что KI параллельно BI_a.
Подсказка 4
Тогда KI - средняя линия, и мы получаем, что AI=II_a. Мы получили какое-то отношение длин на прямой AI_a. Какой ещё есть факт, связанный с отношениями на этой прямой?
Подсказка 5
Лемма о трезубце! Применив её, мы получим, что IW=WI_a, где W - середина дуги BC. Но это значит, что AI/IW=2/1. Это что-то напоминает... Вспомните, что мы ещё не использовали?
Подсказка 6
Мы ещё ничего не говорили, что точку M пересечения медиан, настало время ей воспользоваться, и тем, что медиана делится в отношении 2/1 точкой M, и задача решится!
Давайте поймем, как реализовать странное условие про угол. Вспомним про то, что внутренняя и внешняя биссектрисы одно и того же угла
перпендикулярны. Тогда давайте дополнительно отметим центр вневписанной окружности данного треугольника, касающейся стороны
Пусть это
Значит,
Так как то
— средняя линия треугольника
По лемме о трезубце
— середина
следовательно,
Тогда
Пусть — середина стороны
Тогда по свойству медианы:
Тогда
Так как — середина дуги
не содержащей
то
А это означает требуемое.
Ошибка.
Попробуйте повторить позже
В вершинах правильного двенадцатиугольника в некотором порядке расставили натуральные числа от 1 до 12 (каждое по одному разу). Могло ли случиться так, что суммы всех пар соседних чисел являются простыми и суммы всех пар чисел, между которыми стоят ровно два числа, тоже являются простыми?
Источники:
Подсказка 1
Для начала, попробуйте взять любое число от 1 до 12 и посмотреть, сколько чисел в сумме с исходным дают простое число!
Подсказка 2
Да, для каждого числа это индивидуально, поэтому конкретно из этого факта мало что можно извлечь. Но если рассмотреть похожую идею, какие числа в сумме с исходным образуют простое число? И как нам это поможет в задаче?
Подсказка 3
Верно, каждое число влияет ровно на 4 суммы. Так что, если мы найдем два числа, для которых дополнение до простого совпадает, то мы победим! (дополнение – число, которое в сумме с исходным даёт простое)
Подсказка 4
Да, надо посмотреть на числа 6 и 12.
Каждое число в вершине участвует ровно в четырёх суммах. Заметим, что для получения простой суммы к числам 6 и 12 можно прибавить только 1, 5, 7 и 11. Значит для вершин, в которых стоят числа 6 и 12, наборы соседних чисел и чисел, стоящих от них через две вершины, должны совпадать. Однако, для каждой вершины эти наборы различны, поэтому хотя бы одна из сумм не будет являться простым числом.
Ошибка.
Попробуйте повторить позже
Сколькими способами в таблице можно расставить числа от 1 до 9 (каждое по одному разу) так, чтобы в каждом столбце сверху-вниз
и в каждой строке слева-направо числа шли в порядке возрастания?
Источники:
Подсказка 1
Попробуем представить себе расстановку чисел в таблице (от а₁ до а₉). Что можно точно сказать об этих числах?
Подсказка 2
Правильно, в каждом ряду и столбце последующее число больше предыдущего. Подумайте, чему равны первое (а₁) и последнее (а₉) числа, а также попробуйте вывести оценку на а₅.
Подсказка 3
Теперь, имея оценку на а₅, можем разобрать по отдельности все три случая возможного значения.
Подсказка4
Если а₅ = 4 или 6, по очереди находим количество способов расстановки чисел, меньших и больших а₅, а затем перемножаем. Если а₅ = 5, то следует начать с рассмотрения клеток а₃ и а₇ и количества способов для каждого значения цифр, стоящих в этих клетках. Остаётся только проверить, нет ли у нас пересекающихся случаев, и сложить общее количество способов
Пронумеруем клетки таблицы так, как показано на рисунке. Ясно, что в левой верхней клетке стоит число 1, а в правой нижней — число 9.
1 | | |
| | |
| | 9 |
По условию поэтому
Рассмотрим случаи.
1) Если то числа
и
— это 2 и 3. Способов их расстановки всего 2. Теперь вычислим количество вариантов выбора чисел
и
На их место можно поставить любую из оставшихся пар чисел, причём
поэтому расстановка каждой пары определяется
однозначно. Всего таких пар
Оставшиеся два числа расставляются однозначно. Всего получилось
вариантов
расстановки.
2) Если то числа
и
— это 7 и 8, и случай аналогичен предыдущему. Получаем ещё 12 вариантов расстановки.
3) Если то посмотрим, какие числа могут стоять в клетках с номерами
и
На их место нельзя ставить числа 2 и 8, так
как эти числа обязаны быть соседями 1 и 9 соответственно. Если
то
и
Любое из оставшихся чисел можно
поставить в клетку
тремя способами, оставшиеся числа ставятся однозначно. Рассмотренный вариант аналогичен случаям
и
— в каждом получаем по 3 варианта расстановки, но были дважды посчитаны случаи, когда числа
и
— это
3 и 7. Всего таких случаев два:
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
1 | 4 | 7 |
2 | 5 | 8 |
3 | 6 | 9 |
В итоге получаем вариантов.
Если ни одно из чисел в клетках и
не равно 3 или 7, то в клетках
и
могут стоять лишь числа 4 и 6 в любом порядке.
Тогда в клетках
и
стоят числа 2 и 3 в любом порядке, а в клетках
и
— числа 7 и 8 в любом порядке. Всего 8 вариантов
расстановок.
Все случаи разобраны, искомое число вариантов равно
Ошибка.
Попробуйте повторить позже
Назовём число полуцелым, если число
— целое. Полуцелой частью числа
назовём наибольшее полуцелое число, не превосходящее
и будем обозначать
Решите уравнение
Источники:
Подсказка 1
Так, даны какие-то полуцелые части. Понятно, что сразу же напрашивается аналогия с целой и дробной частью. Когда мы делим число x на целую —[x], и дробную — {x} части, мы можем записать, что х=[x]+{x}, где [x] — целое число, а {x} лежит на [0,1). Здесь, чтобы облегчить себе жизнь, поступим так же и запишем подобные ограничения на полуцелую часть числа и “остаток”, который получается после ее вычитания.
Подсказка 2
Если обозначить за n/2 полуцелую часть, то можно записать, что x = n/2+r. Получаем уравнение на n и r и имеем соответствующие ограничения на эти величины. Далее нужно будет активно использовать то, в каких пределах лежит r, и вспомнить, какие приемы можно использовать в подобных задачах с целой и дробной частью.
Подсказка 3
Удобнее будет отдельно рассмотреть положительные и отрицательные n. Дальше только аккуратные преобразования, нахождение n, подстановка и нахождение r :)
Рассмотрим два случая.
1) Число — полуцелое, тогда
и исходное уравнение примет вид
Корнями данного уравнения являются числа но тогда числа
не являются целыми, значит решений
нет.
2) Имеет место равенство
где и
тогда
А также исходное уравнение примет вид
Выразим из уравнения и получим
Решения существуют только при Найдём все
удовлетворяющие неравенству
Если , то
и может иметь решение только лишь неравенство
которое после возведения в квадрат равносильно
Поскольку и
, то
— единственное целое значение, удовлетворяющее
системе. В этом случае
Если то решений нет, так как
— целое.
Если , то
и может иметь решение только лишь неравенство
Поскольку и
то
— единственное целое значение,
удовлетворяющее системе. В этом случае
Ошибка.
Попробуйте повторить позже
Пусть — множество всех простых чисел, расположенных в некотором порядке. Может ли случиться так, что для всех
натуральных
число
является натуральным?
Источники:
Подсказка 1
В задачах на делимость (а это по сути она и есть) часто выгодно рассмотреть какое-то красивое число. А поскольку у нас в задаче часто фигурируют простые, рассмотрим p_m = 2. Что тогда хорошего можно сказать про дробь?
Подсказка 2
Тогда, можно сказать, что число меньше 2, а значит равно 1, а значит, p_(m + 1) = p^2_(m + 2) + 2. А мы как-то использовали m? Может ли m быть сильно большим? Как можно ограничить m зная симметричность p_(i + 1) и p_i в нашем числе?
Подсказка 3
Если m > 1, то можно взять рассмотреть (2p_(m - 1) - p^2_(m + 1))/(2 + p_(m - 1)). Тогда, p_(m - 1) = p^2_(m + 1) + 2 = (p^2_(m + 2) + 2)^2 + 2. По какому модулю теперь удобно посмотреть, при наличии тут множественных квадратов?
Подсказка 4
Конечно, mod 3. Ведь тогда, если p_(m + 2) != 3, то p_(m + 1) кратен 3, а значит равен 3. Но тогда p_(m + 2) = 1. А если же p_(m + 2) = 3, то p_(m - 1) = 123. Значит, пришли к общему противоречию с тем, что m > 1, значит, m = 1. При этом, поняли, что mod 3 в этой задаче, как будто, играет важную роль. Давайте тогда , если уж все таки хотим делимость, рассмотрим такие p_k и p_k + 1, что их сумма кратна 3, и при этом они оба отличны от 3. Что это значит тогда для этих двух чисел? А для дроби?
Подсказка 5
Это значит, что остатки mod 3 у этих
Подсказка 6
Это числа, которые сравнимы с 2 mod 3, а после идет сама тройка. Но тогда, если после тройки стоит число = 2 mod 3, то после него идут только числа = 2 mod 3, а значит пришли к противоречию, так как числа = 1 mod 3 существуют. А значит, после 3 идут только числа = 1 mod 3, но тогда перед 3 стоит конечное число простых = 2 mod 3. А то, что таких бесконечно - остаётся вам в качестве упражнения! :)))
Предположим, что такое могло случиться. Тогда существует натуральное такое, что
Значит число
является натуральным, откуда
Случай невозможен, так как тогда число
также является натуральным, откуда
Теперь если то
что невозможно. Если же
то
Значит,
Это невозможно. Следовательно,
Предположим теперь, что нашлись числа и
с различными ненулевыми остатками при делении на 3, то есть
Поскольку число
является натуральным, то
Но тогда
Это невозможно, так как квадраты имеют остатки 0 или 1 при делении на 3. В итоге мы доказали, что числа с остатками 1 и 2 при делении на 3 не могут быть соседними.
Поскольку это означает, что после
стоят несколько чисел с остатком 2 при делении на 3, затем где-то стоит
число 3. Если после тройки стоит число с остатком 2 при делении на 3, то все числа далее будут с таким же остатком и в
последовательности простых чисел не будет ни одного числа с остатком 1 при делении на 3 (такие есть, например, число
7).
Следовательно, после тройки стоит число с остатком 1 при делении на 3 и все числа за ним имеют такой же остаток. Но тогда до тройки стоит лишь конечное число простых чисел с остатком 2 при делении на 3.
Предположим, что простых чисел вида конечное число. Обозначим все такие числа через
Число
не
делится на простые числа
и даёт остаток 2 при делении на 3. Значит среди его простых делителей должно быть число вида
— противоречие.