.02 Делимость
Ошибка.
Попробуйте повторить позже
Даша и Таня по очереди выписывают на доску цифры шестизначного числа. Сначала Даша выписывает первую цифру, затем Таня — вторую, и так далее. Таня хочет, чтобы полученное в результате число делилось на три, а Даша хочет ей помешать. Кто из них может добиться желаемого результата независимо от ходов соперника?
Источники:
У Тани есть следующая выигрышная стратегия: после очередного хода Даши она должна дописать к числу такую цифру, чтобы в
результате сумма цифр числа делилась на . Это всегда можно сделать (более того, для этого Тане достаточно использовать цифры
и
Тогда после каждого хода Тани (в том числе после последнего) написанное на доске число будет делиться на 3, и Таня
выиграет.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!