Логарифмы на МВ (Финашке)
Ошибка.
Попробуйте повторить позже
Найдите область определения функции
По методу интервалов
Ошибка.
Попробуйте повторить позже
Найдите множество значений функции
ОДЗ функции: Пропотенцируем уравнение
по основанию логарифма:
и, переобозначив
, получим
Выясним, при каких данное уравнение имеет решение, удовлетворяющее
Сразу исключим два очевидных случая
и
Остается рассмотреть вариант Заметим, что левая часть уравнения
для указанных степеней
является выпуклой вверх
функцией, т.к.
Это значит, что её график лежит строго ниже любой касательной к нему (кроме точки касания) и для случая, когда правая часть
уравнения является касательной к графику при
, уравнение
корней среди
не
имеет.
Во всех оставшихся случаях будет пересекаться с прямой
при
Действительно, в случае касательная, проведённая к
в точке
оказывается в некоторой левой окрестности точки
касания выше прямой
а следовательно, и сам график
находится выше прямой
в некоторой (возможно
меньшей) левой окрестности точки
Однако в точке
функция
обнуляется и её график становится уже ниже
прямой
В силу непрерывности обеих функций строго внутри интервала
найдётся точка пересечения их
графиков.
В случае будет наблюдаться аналогичная ситуация: в некоторой правой окрестности точки касания
график
находится выше прямой
Однако,
следовательно, рано или поздно график функции станет ниже прямой
и в силу непрерывности обеих функций на луче
найдётся точка пересечения их графиков.