Тема . Турнир Ломоносова - задания по годам

ТурЛом до 2020

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела турнир ломоносова - задания по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49149

Все коэффициенты многочлена P(x)  — целые числа. Известно, что P(1)= 1  и что P(n)= 0  при некотором натуральном n  . Найдите n.

Источники: Турнир Ломоносова-2001, 10-11.5 (см. olympiads.mccme.ru)

Показать ответ и решение

Воспользуемся теоремой Безу

P(n)− P(1)= −1n≡−10

Откуда n− 1= ±1  , поскольку n∈ ℕ  , то n =2.

Ответ:

 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!