ОММО 2015
Ошибка.
Попробуйте повторить позже
Для найдите значение суммы
Источники:
Подсказка 1!
Тут нам не очень удобно работать, так как в формуле квадраты косинусов. Давайте воспользуемся формулой cos^2(x) = (1+cos(2x))/2 и приведем все слагаемые к бесквадратному виду.
Подсказка 2!
Теперь нам нужно посчитать сумму (1 + cos(2x) + 1 + cos(4x) + ....... + 1 + cos(2nx))/2. То есть это n/2 + сумма косинусов /2. Давайте добавим и вычтем cos(0) для удобства. Теперь нам нужно просто посчитать сумму косинусов от 0 до 2nx!
Подсказка 3!
Чтобы посчитать, нужно вспомнить, что 2nx = Pi по условию! Попробуйте как-то сгруппировать слагаемые :)
Первое решение.
Воспользуемся тождеством
Тогда по условию нам надо посчитать
где
По условию так что для любого
выполнено
Появляется идея: разбить
слагаемые-косинусы на пары по аргументам
потому что сумма косинусов у каждой такой пары равна
нулю.
В сумме количество слагаемых
. Если
нечётно, то все слагаемые разбиваются на пары с нулевой суммой за счёт сказанного
выше. Если
чётно, то паре не найдётся слагаемому
, но оно равно нулю.
В итоге для любого
так что ответ
Второе решение.
Заметим, что
Если нечетно, разобьем все слагаемые, кроме
, на пары, что сумма чисел в паре равна 1 . Отсюда разбитые на пары
слагаемые дают сумму
, а
. Если же
четно, то без пары остаются и
, и
. И в том, и в другом случае полная сумма равна
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!