Тема ОММО - задания по годам

ОММО 2015

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#34645

На острове каждый житель либо рыцарь (всегда говорит правду), либо лжец (всегда лжёт), либо обычный человек (может и говорить правду, и лгать). Жители этого острова А и В сказали следующее. А: “В — рыцарь”. В: “А — не рыцарь.” Докажите, что по крайней мере один из них говорит правду, но это не рыцарь.

Подсказки к задаче

Подсказка 1

В задачах на рыцарей/лжецов есть один важный простой приём — разбор случаев! Нужно лишь выбрать, относительно чего рассматривать случаи, и в каждом из случаев работать с уже конкретными высказываниями.

Подсказка 2

Например, если А сказал правду/солгал, мы сразу получаем информацию из обоих утверждений, которая нам и поможет вычислить, кто есть кто!

Показать доказательство

Разберём два возможных случая:

  • Если A сказал правду, что В — рыцарь, то слова В о том, что А — не рыцарь, должны быть верны. В этом случае А сказал правду и А — не рыцарь, так что условие задачи выполняется.
  • Если А солгал, что В — рыцарь, то и А не может быть рыцарем (потому что рыцарь не мог солгать). Так что В сказал правду. При этом В не является рыцарем, потому что А солгал. Под условие задачи подходит человек В.

Итак, в обоих случаях получаем требуемое.

Ошибка.
Попробуйте повторить позже

Задача 2#34649

На острове каждый житель либо рыцарь (всегда говорит правду), либо лжец (всегда лжет), либо обычный человек (может как говорить правду, так и лгать). Рыцари считаются людьми высшего ранга, обычные люди - среднего, а лжецы — низшего. А, В и С — жители этого острова. Один из них — рыцарь, другой — лжец, а третий — обычный человек. А и В сказали следующее. А: “В по рангу выше, чем С.” В: “С по рангу выше, чем А.” Что ответил С на вопрос: “Кто выше по рангу — А или В?”

Подсказки к задаче

Подсказка 1

Конечное количество людей и утверждений –> может помочь обычное рассмотрение случаев! Утверждений всего 2, а значит, вариантов -- 2² (каждое может быть либо правдой, либо ложью)

Подсказка 2

В каждом из этих вариантов мы получаем либо точное знание о том, кто есть кто, и тогда знаем ответ на вопрос С, либо получаем противоречие. Главное, не забывайте учитывать и те высказывания, что Вы посчитали за правду или ложь – например, если A > С и B > С, то отношение между А и B поможет определить правдивость их искомых высказываний.

Показать ответ и решение

Рассмотрим два возможных случая:

  • А сказал правду, то есть В выше С.

    Если В сказал правду, то оба они выше А. Тогда А — лжец. Противоречие с тем, что мы рассматриваем случай, когда А сказал правду.

    Если же В солгал, то он обычный человек среднего ранга (не ниже всех), отсюда С — лжец и А — рыцарь. Тогда С скажет, что В выше А, то есть соврёт.

  • А солгал, то есть на самом деле С выше В.

    Если В сказал правду, то он обычный человек среднего ранга, а С — рыцарь. То есть А — лжец, что соответствует словам В. Отсюда С скажет, что В выше А.

    Если же В солгал, то А выше С, а также С выше В. Отсюда А — рыцарь. Противоречие с тем, что мы рассматриваем случай, когда А солгал.

Итак, С скажет, что В выше А.

Ответ:

В

Ошибка.
Попробуйте повторить позже

Задача 3#45585

При каких значениях параметра a  уравнение

              2
ln(x+ a)− 4(x+ a)+ a= 0

имеет единственный корень?

Источники: ОММО-2015, номер 8, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Понятно, что искать тут как-то решения сразу или выражать х или а, у нас не получится. У нас есть и логарифм, и квадрат. Но сразу видим у них общие части. Что тогда с ними нужно сделать?

Подсказка 2

Верно, мы можем заменить х+а новой переменной, например, t. Теперь мы можем выразить а через t. Хорошо бы было построить график этого уравнения в плоскости tOa, но у нас там логарифм+ квадрат... Но в 10-11 классе это же не проблема? Особенно, если вы смотрели вебинары и помните, что там делали!

Подсказка 3

Да, давайте просто проанализируем нашу функцию относительно t. Попробуйте найти минимум функции и подумать, какие а вам не подойдут сразу, другие же отсечь, исходя из уловия задачи.

Показать ответ и решение

После замены t= x+ a  получаем уравнение a= 4t2 − lnt.  Исследуем множество значений f(t)= 4t2− ln t  . Возьмём производную

 ′       1  8t2− 1
f(t)= 8t− t =--t--

На области определения t> 0  получаем  ′
f(t)<0  при     1
t< √8  ,  ′ 1
f (√8-)=0  ,  ′
f (t)> 0  при     1
t> √8.  Тогда функция имеет единственный минимум в точке      1
t∗ = 2√2,  а при t→ 0  и t→  +∞ она стремится к +∞ . Тогда ясно, что при a< f(t∗)  решений нет. В случае же a >f(t∗)  за счёт выбора x =t− a  можно подобрать соответствующие для t  два решения, при a =f(t∗)  ровно одно.

В итоге подходит только a= f(t∗)= 1+3l2n2  .

Ответ:

 1+3ln2
   2

Ошибка.
Попробуйте повторить позже

Задача 4#49147

Для x= π-
   2n  найдите значение суммы

  2      2       2           2
cos (x)+ cos (2x)+ cos (3x)+ ...+ cos (nx).

Источники: ОММО-2015, номер 6, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1!

Тут нам не очень удобно работать, так как в формуле квадраты косинусов. Давайте воспользуемся формулой cos^2(x) = (1+cos(2x))/2 и приведем все слагаемые к бесквадратному виду.

Подсказка 2!

Теперь нам нужно посчитать сумму (1 + cos(2x) + 1 + cos(4x) + ....... + 1 + cos(2nx))/2. То есть это n/2 + сумма косинусов /2. Давайте добавим и вычтем cos(0) для удобства. Теперь нам нужно просто посчитать сумму косинусов от 0 до 2nx!

Подсказка 3!

Чтобы посчитать, нужно вспомнить, что 2nx = Pi по условию! Попробуйте как-то сгруппировать слагаемые :)

Показать ответ и решение

Первое решение.

Воспользуемся тождеством   2   1+cos2t
cos t=   2  .

Тогда по условию нам надо посчитать

n+ cos2x+ cos4x+ ...+ cos2(n− 1)x+ cos2nx   n− 1  S
-----------------2------------------= -2--+ 2,

где S = cos0x+ cos2x+ cos4x+ ...+ cos2(n− 1)x+ cos2nx.

По условию 2nx= π,  так что для любого t  выполнено cos(2nx− t)= cos(π− t)= − cost.  Появляется идея: разбить слагаемые-косинусы на пары по аргументам t< − >2nx− t,  потому что сумма косинусов у каждой такой пары равна нулю.

В сумме S  количество слагаемых n+ 1  . Если n  нечётно, то все слагаемые разбиваются на пары с нулевой суммой за счёт сказанного выше. Если n  чётно, то паре не найдётся слагаемому cos(nx)  , но оно равно нулю.

В итоге S = 0  для любого n,  так что ответ n−21.

Второе решение.

Заметим, что

   (   )     (       )      (  )     (      )      (   )     (  )
cos2  kπ + cos2  (n-− k)π =cos2  kπ  +cos2  π− kπ  = cos2 kπ  + sin2 kπ  = 1.
     2n          2n          2n        2  2n        2n        2n

Если n  нечетно, разобьем все слагаемые, кроме cos2(nx)  , на пары, что сумма чисел в паре равна 1 . Отсюда разбитые на пары слагаемые дают сумму n−1
 2  , а cos2(nx)= cos2(π)= 0
            2  . Если же n  четно, то без пары остаются и cos2(nx)= cos2(π) =0
            2  , и cos2(π)= 1
    4   2  . И в том, и в другом случае полная сумма равна n−-1.
 2

Ответ:

 n−1
 2

Ошибка.
Попробуйте повторить позже

Задача 5#49482

Решите систему уравнений

{ 26x2 +42xy+ 17y2 = 10;
  10x2 +18xy+ 8y2 =6.

Источники: ОММО-2015, номер 5, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

О, две формулы, похожие на квадраты суммы! Только коэффициенты какие-то лютые...

Подсказка 2

Если 26 и 10 или 17 и 8 вычесть, то получится квадрат. Да и если сложить, вообще-то тоже! Так давайте сложим и вычтем уравнения системы

Подсказка 3

Не забываем, что когда квадрат равен какому-то положительному числу, возникает два случая!

Показать ответ и решение

Складывая и вычитая два уравнения системы, получаем, что исходная система эквивалентна следующей:

({(6x+ 5y)2 = 16
        2
((4x+ 3y) = 4

Откуда получаем 4 возможных случая

{             {             {              {
  6x +5y = 4    6x+ 5y =4       6x +5y = −4    6x+ 5y = −4
  4x +3y = 2    4x+ 3y =− 2     4x +3y = 2     4x+ 3y = −2

Решая каждую из этих систем, находим 4 ответа: (−1,2),(− 11,14),(11,−14),(1,− 2)  .

Ответ:

 (−1,2),(− 11,14),(11,−14),(1,− 2)

Ошибка.
Попробуйте повторить позже

Задача 6#49597

Сумма первых тринадцати членов некоторой арифметической прогрессии составляет 50%  от суммы последних тринадцати членов этой прогрессии. Сумма всех членов этой прогрессии без первых трёх относится к сумме всех членов без последних трёх как 4 :3.  Найти количество членов этой прогрессии.

Источники: ОММО-2015, задача 1 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В таких задачах с прогрессиями и большим количеством неизвестных полезно представить прогрессию как a+d; ...; a+nd. Попробуйте записать данные из условия в таком виде

Подсказка 2

Верно, получилось 2 уравнения с неизвестными a, n и d. Как бы найти n, когда в двух равенствах 3 переменные?

Подсказка 3

Конечно! Попробуйте "выразить" в каждом уравнении а, а потом приравнять эти уравнения. Получится, что в каждом слагаемом есть множитель d, который можно сократить. Остаётся только аккуратно посчитать и найти n

Показать ответ и решение

Пусть это прогрессия a+ d,...a +nd,  в которой всего n  членов. Из первого условия

                  1
(a+ d)+...(a+ 13d)= 2[(a +(n− 12)d)+...+(a+ nd)]

26a+ 182d= 13a+ 13nd− 78d ⇐ ⇒  a = nd − 20d

Запишем второе условие

4[(a +d)+ ...+(a+ (n− 3)d)]= 3[(a+ 4d)+ ...(a+ nd)]

 [        (n−-3)(n−-2)-]   [                 (n−-4)(n−-3)-]
4 (n− 3)a+      2    d = 3 (n− 3)a+ (n− 3)nd−      2    d

4a+2(n− 2)d= 3a+ 3nd− 3 ⋅ n−-4 ⇐⇒  a= nd+ 4d − 3⋅ n-− 4d
                        2                       2

Из полученных равенств имеем

n− 20= n+ 4− 3⋅ n−-4 ⇐⇒   n−-4 =8  ⇐⇒   n =20
                2           2
Ответ:

 20

Ошибка.
Попробуйте повторить позже

Задача 7#64569

В конус вписан цилиндр объема 9. Плоскость верхнего основания этого цилиндра отсекает от исходного конуса усеченный конус объемом 63. Найдите объем исходного конуса.

Источники: ОММО-2015, номер 10, (см.olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Запишем известные нам объёмы! В работе с усечённым конусом нам поможет формула, выражающая его объём через высоту и радиусы оснований. А чего нам не хватает для объёма искомого конуса?

Подсказка 2

Нам не хватает его высоты — она пока не фигурирует ни в одной из известных фигур. Зато у нас в обоих данных объёмах задействована высота усечённого конуса, которая дальше нам не очень нужна. Так выразим её из объёма цилиндра и подставим в объём усечённого конуса! Поработав с квадратным уравнением, мы отыщем отношение радиусов верхнего и нижнего оснований.

Подсказка 3

Отыскать высоту исходного конуса нам помогут подобные треугольники: рассмотрите осевое сечение этого конуса. Отношение радиусов поможет нам связать высоты исходного и усечённого конусов. Осталось немного повозиться с формулами, подставляя известные отношения, и задача убита!

Показать ответ и решение

PIC

Пусть высота и радиус исходного конуса равны H  и R  , а высота и радиус цилиндра равны h  и r  . Воспользуемся формулой для объема усеченного конуса:   (          )
13π R2+ Rr+ r2 h= 63  . Также мы знаем, что πr2h= 9  . Поделив соответствующие части равенств получаем

(  )  (  )
 R- 2+  R- + 1= 63⋅3= 21
 r      r        9

Решая квадратное уравнение, получаем корни 4  и − 5,  геометрический смысл имеет только положительный. R∕r= 4,H-−h= 4, h-= 3
       H      H  4  , откуда получаем для исходного конуса:

   1       1 (   )(R )2 H  1      4
V = 3πR2H = 3 πr2h r-  h-= 3 ⋅9 ⋅42⋅3 = 64
Ответ: 64

Ошибка.
Попробуйте повторить позже

Задача 8#68792

На острове каждый житель либо рыцарь (всегда говорит правду), либо лжец (всегда лжёт), либо обычный человек (может и говорить правду, и лгать). Жители этого острова, А и В , сказали следующее. А: “В — рыцарь”. В: “А — лжец”. Докажите, что либо один из них говорит правду, но это не рыцарь, либо один из них лжёт, но это не лжец.

Источники: ОММО-2015, задача 2 (см. olympiads.mccme.ru)

Показать доказательство

Переформулируем условие: говорить правду, но не являться рыцарем, а также врать, но не являться лжецом, может только обычный человек. Получается, надо доказать, что среди жителей есть хотя бы один обычный человек. От противного: пусть на острове нет обычных людей. Переберем возможные случаи:

В первом А — лжец. Тогда А соврал о том, что В — рыцарь и В на самом деле лжец. Но тогда В сказал правду !?

Во втором А — рыцарь. Тогда А сказал правду и В действительно рыцарь. Но В сказал, что А — лжец !?

Итого, А может быть только обычным человеком. Следовательно, получили противоречие с предположением.

Ошибка.
Попробуйте повторить позже

Задача 9#68793

На острове каждый житель либо рыцарь (всегда говорит правду), либо лжец (всегда лжёт). Два жителя называются однотипными, если они либо оба рыцари, либо оба лжецы. А, В и С — жители этого острова. А говорит: “В и С однотипны”. Что ответит С на вопрос “А и В однотипны?”

Источники: ОММО-2015, задача 2 (см. olympiads.mccme.ru)

Показать ответ и решение

Рассмотрим случаи:

В первом А — рыцарь. Тогда В и С действительно однотипны. Если В и С — рыцари, то С ответит “Да”, как и в случае, если В и С — лжецы.

Во втором А — лжец. Тогда В и С не однотипные. Если В — лжец, а С — рыцарь, то С ответит “Да”, как и в случае, если В — рыцарь, а С — лжец.

Итого, в любом случае С ответит “Да”.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 10#76409

Основания AB  и CD  трапеции ABCD  равны 65 и 31 соответственно, а её диагонали взаимно перпендикулярны. Найдите скалярное произведение векторов −−→
AD  и −−→
BC.

Источники: ОММО - 2015, задача 4, и Газпром - 2022, задача 3 (9-11 классы)

Подсказки к задаче

Подсказка 1

Перед нами трапеция, у которой мы знаем соотношение оснований, а посчитать нам хочется модули векторов- значит, попробуем посчитать всевозможные отрезки на чертеже!

Подсказка 2

Нам известно, как выглядит скалярное произведение векторов, которые мы можем выразить как сумму векторов, выраженных через друг друга. Теперь нужно его записать и использовать угол!

Подсказка 3

Нужное скалярное произведение есть 31/65 от суммы квадратов длин векторов AO и BO. А как учесть угол?)

Показать ответ и решение

Пусть O  - точка пересечения диагоналей AC  и BD  . Из подобия треугольников AOB  и COD  следует, что −O−→C = 31−→AO
     65  , а −−→   31−−→
OD = 65BO  . Обозначим вектор −→
AO  через ⃗a  , а вектор −−→
BO  через ⃗b  . Тогда, из условия следует, что (⃗a,⃗b)= 0  и

−−→  −→   −−→      31   −−→  −−→   −−→      31
AD =AO + OD = ⃗a+ 65⃗b,  BC =BO + OC =⃗b+ 65⃗a

PIC

Откуда

 −−→ −−→   (   31⃗ ⃗  31-)   31(  2  ⃗2)        ⃗   31   2
(AD,BC) = ⃗a +65b,b+ 65⃗a  = 65 |⃗a| + |b| + (...)⋅(⃗a,b)= 65|AB | =2015,

где предпоследнее равенство следует из того, что треугольник AOB  - прямоугольный.

Ответ: 2015

Ошибка.
Попробуйте повторить позже

Задача 11#82707

Четырёхзначное число X  не кратно 10. Сумма числа X  и числа, записанного теми же цифрами в обратном порядке, равна N  . Оказалось, что число N  делится на 100. Найдите N  .

Показать ответ и решение

Так как X  не делится на 10, то последняя цифры — не 0.  Пусть X = abcd,  где a,b,c,d  — цифры.

Из условия следует уравнение

---- ----   ..
abcd+ dcba= N .100

Первое решение.

Так как d+ a  оканчивается на 0, а сами эти цифры нулю равняться не могут, то d+a =10.  Тогда c+ b+1  оканчивается на 10, поэтому c+b =9.  Получаем

N = 1000(a+d)+ 100(b+ c)+ 10(c+ b)+(d+ a) =1001⋅10 +110⋅9= 11000

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Запишем слагаемые левой части по определению десятичной записи

1000a+100b+ 10c+ d+ 1000d+ 100c+ 10b+ a= N

Приводим подобные слагаемые

1001(a+ d)+110(b+ c)=N

Так как N  делится на 100,  то на 10  тоже делится. Тогда и                   ..
1001(a+ d)+110(b+c). 10.

Заметим, что         .
110(b+ c) .. 10,  тогда         .
1001(a+d).. 10,  и, так как 1001  и 10  — взаимно простые, то a+ d  делится на 10. Но a  и  d  — цифры, и их сумма не больше 18  , и при этом больше 0,  так как по условию d⁄= 0.  Единственное кратное 10  число в этом промежутке — 10,  поэтому a +d =10.

Пусть N = 100x.  Вернемся к нашему равенству, и подставим в него a+ d= 10  и N = 100x.

10010 +110(b+ c)=100x

Сокращаем на 10

1001+ 11(b+ c)= 10x

Справа число, делящееся на 10.  Так как 1001≡ 1 (mod 10),  то 11(b +c)≡ 9 (mod 10).  Так как 11≡ 1 (mod 10),  то b+ c≡ 9 (mod10).

Так как, b  и c  — цифры, то их сумма хотя бы 0  и не больше 18,  а единственное число с остатком 9  при делении на 10  в этом промежутке — это 9.  Тогда b+ c= 9.

Теперь найдем N

N = 1001⋅10+ 110 ⋅9 =11000.
Ответ: 11000

Ошибка.
Попробуйте повторить позже

Задача 12#104340

В турнире по минифутболу принимаются ставки на четыре команды. На первую команду ставки принимаются в соотношении 1 :5  (при выигрыше первой команды игрок получает сумму, которую он поставил на эту команду и плюс пятикратную сумму, т. е. получает в шесть раз больше поставленных денег, а при проигрыше деньги не возвращаются). На вторую команду ставки принимаются в соотношении 1 :1,  на третью — 1 :8,  на четвертую — 1:7.  Можно ли так поставить, чтобы выиграть при любом исходе турнира?

Подсказки к задаче

Подсказка 1

Если игрок в случае выигрыша первой команды получает в шесть раз больше, чем он поставил, то какую сумму надо поставить на первую команду, чтобы получить больше, чем было?

Подсказка 2

В таком случае надо поставить более 1/6 всех денег. Что же с остальными командами? Можно ли по такой же логике распределить все наши изначальные деньги между всеми командами?

Показать ответ и решение

При победе первой команды ставку возвращают в шестикратном размере, поэтому на неё необходимо поставить более 1∕6  всех денег. Аналогично, на вторую команду необходимо поставить более 1∕2  всех денег, на третью более 1∕9  , на четвертую более 1∕8  . Так как

1  1  1   1  1  1   1  1
2 + 6 +8 + 9 < 2 + 6 + 6 + 6 = 1,

то существует набор чисел, в сумме дающих единицу, таких, что каждое больше соответствующей дроби. Любой такой набор подходит.

Ответ: да
Рулетка
Вы можете получить скидку в рулетке!