Тема 18. Задачи с параметром

18.08 Разные методы. Исследование замены

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#126973

При каких значениях a  уравнение

        √ -
a= sinx +  3cosx

имеет ровно два решения на отрезке [      ]
 − π; 7π ?
   3  6

Показать ответ и решение

Преобразуем правую часть, используя вспомогательный аргумент:

      ( 1      √3    )
  a= 2  2 sinx +-2-cosx
    (                  )
a= 2 cos π-sinx +sin π-cosx
        3   (     3)
     a = 2sin  π+ x
            ( 3   )
      a =sin π-+ x
      2      3

Сделаем линейную замену t= π-+ x.
   3  Тогда необходимо, чтобы новое уравнение a
2 = sint  имело ровно два решения на отрезке [  3π]
 0;-2  .

Изобразим тригонометрическую окружность и отметим на ней нужный промежуток:

a03π
22

Видим, что у полученного уравнения будет ровно два решения на промежутке [ 3π ]
0;-2 при

0 ≤ a< 1
    2
0 ≤ a< 2
Ответ:

a ∈[0;2)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!