Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела регион 9 класс
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32582

В треугольнике ABC,  в котором AB = BC,  на стороне AB  выбрана точка D,  и вокруг треугольников ADC  и BDC  описаны окружности S1  и S2  соответственно. Касательная, проведенная к S1  в точке D,  пересекает второй раз S2  в точке M.  Докажите, что BM  ∥AC.

Источники: Всеросс., 1996, РЭ, 9.2(см. math.ru)

Подсказки к задаче

Подсказка 1

Не стоит рисовать окружность -- они будут только захламлять чертёж и мешать работать с углами. Работайте с углами - Вам дана касательная и даны четыре точки на окружности S2

Подсказка 2

Отмечаем (вводим буквой альфа!) угол между касательной и хордой. Отмечаем (вводим букву бетта!) вписанные углы. Не забываем условие про равнобедренный треугольник - равные углы при основании

Подсказка 3

Теперь всё должно получиться -- проверьте, почему равны накрест лежащие углы при искомых прямых (выражаем их через альфа и бетта!)

Показать ответ и решение

PIC

Пусть DM  ∩AC = T.  Тогда ∠MDB  =∠T DA =∠DCA  по свойствам касательной. Далее из вписанности ∠BCD  =∠BMD.  Для доказательства параллельности достаточно равенства ∠DT A= ∠BMD.  Заметим, что ∠BAC = ∠BCA  является суммой одной и двух дужек и внешним для △DAT,  откуда и следует ∠DTA = ∠BCD = ∠BMD,  что и требовалось.

Ответ:

что и требовалось доказать

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!