Регион 2023
Ошибка.
Попробуйте повторить позже
В городе прошли
городских олимпиад по разным предметам. В каждой из этих олимпиад участвовало ровно
школьников, но не
было двух олимпиад с одним и тем же составом участников. Известно, что для любых
олимпиад найдется школьник,
который участвовал во всех этих
олимпиадах. Докажите, что найдется школьник, который участвовал во всех
олимпиадах.
Источники:
Подсказка 1
Попробуйте решить задачу от противного: предположите, что нет школьника, который участвовал во всех 50 олимпиадах.
Подсказка 2
Тогда полезно посмотреть на пересечения пар множеств участников. Какого минимального размера может быть пересечение двух олимпиад?
Подсказка 3
Если пересечение двух множеств слишком маленькое, то для каждого школьника из него можно найти третью олимпиаду, в которой этого школьника нет.
Подсказка 4
Теперь рассмотрите пересечение выбранных двух олимпиад и олимпиад, в которых не участвуют школьники из их пересечения.
Общее пересечение пусто. А сколько всего олимпиад мы рассмотрели?
Подсказка 5
Пересечение менее 30 олимпиад не может быть пустым, значит, пересечение любых двух олимпиад равно 29.
Подсказка 6
Если множества участников всех олимпиад отличаются
друг от друга максимум одним человеком, то как устроено множество всех олимпиадников?
Подсказка 7
Если есть множество из 31 школьника, то сколько различных 30-элементных подмножеств можно составить из него? Достаточно ли этого, чтобы покрыть все 50 олимпиад?
Предположим противное, и пусть в множестве всех школьников есть различные -элементные подмножества
— множества участников каждой олимпиады такие, что пересечение любых 30 из них непусто, а пересечение всех — пусто.
Пусть среди множеств
нашлись два множества и
имеющие
общих элементов
Для каждого элемента среди множеств
найдём подмножество не содержащее
такое подмножество
найдётся, иначе
— общий элемент множеств
(Заметим, что среди подмножеств могут быть совпадающие.)
Тогда пересечение не более подмножеств
— пусто. Это противоречит нашему предположению (к данным подмножествам можно добавить еще несколько, чтобы стало 30 подмножеств, при таком добавлении пересечение остается пустым).
Значит, указанных двух множеств и
не найдётся. Тогда пересечение любых двух из множеств
содержит в точности элементов. Пусть
так что
Найдём подмножество (пусть, для определённости, это подмножество — ), не содержащее
Так как
то обязано содержать все элементы
Этих элементов (все они различны), поэтому
Рассмотрим любое подмножество из подмножеств
Предположим, что
содержит элемент, лежащий вне
-элементного множества
Тогда должно пересекаться с каждым из подмножеств
по одному и тому же
-элементному подмножеству множества
Но
значит, такого -элементного подмножества не существует — противоречие. Отсюда делаем вывод, что все множества
являются подмножествами множества
Но в множестве
количество
-элементных подмножеств равно
Получаем
противоречие, завершающее решение задачи.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!