Регион 2022
Ошибка.
Попробуйте повторить позже
Пусть где
— натуральное число. Известно, что числа
— целые, при этом
при всех
и
Докажите, что число
делится на квадрат некоторого
натурального числа, большего
Подсказка 1:
Понятно, что константа здесь взята с неба (так как коэффициенты могут быть любыми числами). Поэтому опираться на 2022 не нужно. Будем доказывать задачу в общем виде, то есть, что P(x) делится на квадрат некоторого целого числа при любом целом x (c ограничением > 1 разберёмся позже).
Подсказка 2:
То есть хотим доказать, что P(x) = Н(х)Q(x)², где Q(x), H(x) ∈ ℤ[x]. Подумаем, какая степень может быть у Q(x)?
Подсказка 3:
В теории, конечно, любая, только вот как доказывать? Доказывать делимость на квадратный трёхчлен уже не самая простая задача, а что говорить про большие степени? Поэтому стоит начать с многочлена Q(x), равного линейной функции, а если не сработает, то придётся страдать...
Подсказка 4:
Хотим доказать, что P(x) делиться на многочлен (x − с)², где с ∈ ℤ. Сейчас Вам предстоит запомнить идею. То, что мы хотим доказать, равносильно тому, что P(x + c) делится на x² (осознайте самостоятельно, чтоб получить удовольствие от задачи). А делимость на x² гораздо более простой в доказательстве факт, чем делимость на другую квадратичную функцию. Как же его доказать?
Подсказка 5:
Введём обозначения для красоты и удобства. Пусть t = x − c, а также R(t) = P(t + c). Хотим доказать, что P(t + с) делится на t², то есть, что R(t) делится на t². Что это значит?
Подсказка 6:
Что у R(t) должны быть нулевыми свободный коэффициент и коэффициент при t. Начнём со свободного. Как изящно получить свободный коэффициент с помощью R(t)?
Подсказка 7:
Подставить 0! R(0) — и есть свободный коэффициент. То есть хотим доказать, что aₙcⁿ + aₙ₋₁cⁿ⁻¹ + ... + a₁c + a₀ = 0, однако по условию мы знаем, что aₙ + aₙ₋₁ + ... + a₁ + a₀ = 0. На какие мысли о "с" это наталкивает?
Подсказка 8:
Разумеется, что нужно взять с = 1, тогда мы сразу докажем, что свободный коэффициент нулевой. Остаётся разобраться с коэффициентом перед t. Его уже простой подстановкой не узнать, придётся считать честно...
Подсказка 9:
Но и это не беда! R(t) = aₙ(t + 1)ⁿ + aₙ₋₁(t + 1)ⁿ⁻¹ + ... + a₁(t+1) + a₀ = 0. Вспомним про бином Ньютона и поймём, что коэффициент при t это naₙ + (n − 1)aₙ₋₁ + ... + a₁. Хотим доказать, что это выражение равно 0. Пока что непонятно, как это делать, но ведь мы ещё никак не воспользовались условием про симметричность коэффициентов...
Подсказка 10:
naₙ + (n − 1)aₙ₋₁ + ... + a₁ = 0 равносильно тому, что aₙ₋₁ + 2aₙ₋₂ ... + (n − 1)a₁ + na₀ (в силу симметрии). Очень уж красиво дополняют друг друга эти выражения, которые численно равны. Причём мы хотим, чтоб они численно были равны 0. Может быть, их тогда стоит сложить?... А изначальное ограничение на 1 разрешится само собой) Дальше мы замолкаем. Успехов!
Достаточно доказать утверждение: многочлен делится на
Действительно, после деления (например, столбиком), в частном
получится многочлен
с целыми коэффициентами, и тогда равенство многочленов
влечет равенство
из которого следует утверждение задачи, поскольку
— целое число.
Для доказательства утверждения сделаем замену положим
и
докажем, что
делится на
т.е. что последние два коэффициента многочлена
равны
Свободный член многочлена равен
Поскольку в многочлене
коэффициент при
равен
коэффициент при
многочлена
равен
Из условий
следует, что удвоенный коэффициент при
равен
Тем самым, задача
решена.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!