Теоремы, связанными с углами

Прямая \(AB\) касается окружности в точке \(A\). На окружности отмечена точка \(C\) так, что \(CB\perp AB\) и \(CB=AB\). Найдите центральный угол, опирающийся на меньшую дугу \(AC\). Ответ дайте в градусах.
Рассмотрим картинку:
Треугольник \(ABC\) – равнобедренный и прямоугольный, следовательно, \(\angle BAC=45^\circ\). Т.к. угол между касательной \(AB\) и хордой \(AC\) равен половине дуги \(\buildrel\smile\over{AC}\), заключенной между ними, то \(\buildrel\smile\over{AC}=90^\circ\). Тогда центральный угол \(\angle AOC=\buildrel\smile\over{AC}=90^\circ\).
Прямая \(AB\) касается окружности в точке \(A\). На окружности отмечена точка \(C\) так, что \(CB\perp AB\) и \(CB=AB\sqrt3\). Найдите центральный угол, опирающийся на меньшую дугу \(AC\). Ответ дайте в градусах.
Рассмотрим картинку:
Треугольник \(ABC\) – прямоугольный, причем, т.к. \(CB=\sqrt3 \cdot AB\), то \[\mathrm{tg}\,\angle BAC=\dfrac{CB}{AB}=\sqrt3 \quad \Rightarrow \quad \angle BAC=60^\circ\]
Т.к. угол между касательной \(AB\) и хордой \(AC\) равен половине дуги \(\buildrel\smile\over{AC}\), заключенной между ними, то \(\buildrel\smile\over{AC}=120^\circ\). Тогда центральный угол \(\angle AOC=\buildrel\smile\over{AC}=120^\circ\).
\(AB\) – касательная к окружности, причем \(A\) – точка касания. На окружности на одинаковом расстоянии от точки \(A\) отмечены точки \(C\) и \(D\), причем дуга \(\buildrel\smile\over{CD}\), не проходящая через точку \(A\), равна \(110^\circ\). Найдите угол \(BAD\), если \(\angle BAD<\angle BAC\). Ответ дайте в градусах.
Рассмотрим картинку:
Т.к. дуги, стягиваемые равными хордами, равны, то \(\buildrel\smile\over{AC}=\buildrel\smile\over{AD}=x\). Т.к. вся окружность равна \(360^\circ\), то \(x+x+110^\circ=360^\circ\), откуда \(x=125^\circ\).
Угол \(BAD\), образованный касательной \(AB\) и хордой \(AD\), равен половине дуги, заключенной между ними, то есть \(\angle BAD=0,5 \buildrel\smile\over{AD}=62,5^\circ\).
Найдите угол между двумя секущими, проведенными к окружности из точки \(O\) вне окружности, если дуги, заключенные между этими секущими, равны \(103^\circ\) и \(47^\circ\). Ответ дайте в градусах.
Рассмотрим картинку:
Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то
\[\angle O=\dfrac12\left(103^\circ-47^\circ\right)=28^\circ.\]
Из точки \(O\) вне окружности проведены две прямые, пересекающие окружность. Большая дуга, образованная этими прямыми, равна \(44^\circ\), а угол между прямыми равен \(15^\circ\). Найдите другую дугу, образованную этими прямыми. Ответ дайте в градусах.
Рассмотрим картинку:
Т.к. угол, образованный двумя такими прямыми-секущими, равен полуразности дуг, заключенных между ними, то
\[\angle O=15^\circ=\dfrac12\left(44^\circ-x\right)\quad \Rightarrow \quad x=14^\circ\]
Угол между двумя секущими, проведенными к окружности из точки \(O\) вне окружности, равен \(20^\circ\). Найдите большую дугу, заключенную между секущими, если сумма градусных мер обеих дуг, заключенных между секущими, равна \(100^\circ\). Ответ дайте в градусах.
Рассмотрим картинку:
Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то
\[\angle O=0,5\left(\alpha-\beta\right)=20^\circ\]
С другой стороны, по условию задачи \(\alpha+\beta=100^\circ\).
Решая систему из этих двух уравнений, находим, что \(\alpha=70^\circ\).
Из точки \(A\) вне окружности проведены две секущие к окружности, угол между которыми равен \(11^\circ\). Первая секущая пересекла окружность в точках \(K_1\) и \(L_1\), вторая — в точках \(K_2\) и \(L_2\), причем \(K_1L_1=K_2L_2\) и дуга \(\buildrel\smile\over{K_1L_1}\), меньшая полуокружности, равна \(95^\circ\).
Найдите меньшую из дуг, заключенных между данными секущими.
Рассмотрим картинку:
Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то
\[\angle A=0,5\left(\alpha-\beta\right)=11^\circ \qquad (1)\]
Т.к. равные хорды стягивают равные дуги, то (меньшая полуокружности) дуга \(\buildrel\smile\over{K_2L_2}=95^\circ\). Вся окружность равна \(360^\circ\), следовательно,
\[\alpha+\beta+2\cdot 95^\circ=360^\circ \quad \Rightarrow \quad \alpha+\beta=170^\circ \qquad (2)\]
Решая систему из уравнений \((1)\) и \((2)\), получим, что \(\beta=74^\circ\).