Тема ПЛАНИМЕТРИЯ

Четырёхугольники

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела планиметрия
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 21#83840Максимум баллов за задание: 7

Две противоположные стороны четырёхугольника равны 1  . Найдите среднюю линию, соединяющую середины двух других его сторон, если сумма углов при одной из них равна   ∘
60 .

Показать ответ и решение

Проведём диагональ BD  и отметим её середину M.

PIC

K  и L  — середины BC  и AD  соответственно, следовательно, KM  и LM  — средние линии треугольников DBC  и ABD  соответственно, тогда

LM = AB-= 1
      2   2

KM = CD-= 1
      2   2

Т.к. KM  ∥CD  и LM ∥AB,  ∠CBD = ∠KMB  и ∠BAD = ∠MLD.  ∠BML  — внешний угол треугольника LMD,  поэтому

∠BML = ∠MLD  +∠MDL

Получаем

                                                            ∘
∠KML  = ∠KMB  +∠BML  = ∠CDB + ∠MLD + ∠MDL  =∠BAD  +∠CDA  =60

Следовательно, треугольник KML  равносторонний, тогда KL = 1.
     2

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 22#83841Максимум баллов за задание: 7

Точки P  и Q   — середины сторон выпуклого четырехугольника ABCD  . Отрезки AP  и AQ  делят диагональ BD  на 3 равные части. Докажите, что ABCD   — параллелограмм.

Показать ответ и решение

Обозначим точки пересечения AP  и AQ  с диагональю BD  как X  и Y  соответственно, тогда BX = XY = YD.  Рассмотрим треугольник BY C,  заметим, что XP  — средняя линия, т.к. BX  =XY  и BP = PC.  Следовательно XP ∥CY.  Аналогично получаем, что CX ∥ YQ.  Значит, AXCY  является параллелограммом.

Проведём диагональ AC.  O  — точка пересечения AC  и XY,  т.к. AXCY  — параллелограмм, то O  делит AC  и XY  пополам.

PIC

Но BX = YC,  следовательно O  делит и BD  пополам. O  — точка пересечения диагоналей четырехугольника ABCD,  делящая их пополам, значит, ABCD  — параллелограмм.

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 23#85077Максимум баллов за задание: 7

Точка M  — середина стороны CD  параллелограмма ABCD  . Точка K  делит его сторону BC  на отрезки с длинами a  и b  так, что угол         ∘
AMK  = 90 . Найдите AK  .

Подсказки к задаче

Подсказка 1

Попробуем удвоить KM. Тогда получим точку K'. Какой особенный треугольник появился на картинке?

Подсказка 2

Верно! Теперь у нас есть равнобедренный треугольник KAK'. Значит, достаточно найти AK'. А как это сделать?

Подсказка 3

Из свойств параллелограмма AD = a + b. А как найти DK'?

Показать ответ и решение

Удвоим KM,  получим точку K ′.

PIC

Рассмотрим треугольник KAK ′.  В нем AM  — высота и медиана одновременно, а значит, по признаку этот треугольник равнобедренный. Тогда AK = AK ′ по определению.

Треугольники MKC  и MK ′D  равны по двум сторонам и углу между ними, так как CM  =MD  по условию, KM = MK ′ по построению, ∠KMC  = ∠DMK ′ как вертикальные. Тогда KC = K′D =b  как соответственные.

BC =AD = a+ b  как противоположные стороны параллелограмма.

AK =AK ′ = AD +DK ′ = a+ 2b.

Ответ:

 a+ 2b

Ошибка.
Попробуйте повторить позже

Задача 24#86024Максимум баллов за задание: 7

Внутри параллелограмма ABCD  выбрана точка E  так, что AE = DE  и ∠ABE = 90∘.  Точка M  — середина отрезка BC.  Найдите угол DME.

Показать ответ и решение

Обозначим через N  середину отрезка AD.  Поскольку треугольник AED  равнобедренный, EN  ⊥AD.  Так как AB ∥ MN  и          ∘
∠ABE  =90 ,  то BE ⊥ MN.

PIC

Таким образом, E  — точка пересечения высот треугольника BMN.  Значит, ME ⊥ BN.  Так как BMDN  — параллелограмм, BN ∥ DM,  откуда ∠DME  = 90∘.

______________________________________________________________________________________________________________________________________________________

Второе решение.

Обозначим середину отрезка AD  точкой G.  Продлим AB  и DM  до их пересечения. Пусть это будет точка T.

PIC

EG  — серединный перпендикуляр в треугольнике ADE,  значит серединный перпендикуляр в треугольнике ADT.  B  — середина   AT  , это следует из подобия треугольников ADT  и BT M.  Тогда, BE  — середенный перпендикуляр, следовательно точка E  — точка пересечения серединных перпендикуляров. Так как B  — середина AT,  и BM ∥AD,  то BM  — средняя линия треугольника ADT  , следовательно M  — середина DT.  Значит, ME  это серединный перпендикуляр, и искомый угол равен 90∘.

______________________________________________________________________________________________________________________________________________________

Третье решение.

Обозначим середину отрезка AD  точкой G.  Проведем BG  и MG.

PIC

Тогда, треугольники ABG  и GMD  равны по двум сторонам и углу. Следовательно, ∠ABG = ∠GMD.  ABEG  — вписанный, тогда ∠ABG  =∠AEG  из-за вписанности. Треугольник AED  равнобедренный, тогда ∠AED  =∠GED.  Итого, получили, что ∠GMD  =∠GED,  следовательно, GEDM  — вписанный, тогда ∠EDM  = 90∘.

Ответ:

 90∘

Ошибка.
Попробуйте повторить позже

Задача 25#86088Максимум баллов за задание: 7

В трапеции ABCD

                 ∘          ∘
AD ∥BC, ∠ABC = 125, ∠CDA = 70

Докажите, что AD = BC +CD.

Показать доказательство

Первое решение.

В силу параллельности AD ||BC :

          ∘           ∘    ∘    ∘
∠BAD  =180 − ∠ABC = 180 − 125  =55

Отложим от точки A  отрезок AK = BC.

PIC

Тогда ABCK  — параллелограмм (т. к. AK ||BC,  AK = BC ),  а CK||AB.

Значит, ∠CKD = ∠BAD = 55∘,  как односторонние углы при секущей AD.

Найдем угол ∠KCD :

∠KCD = 180∘ − ∠CKD − ∠CDK = 55∘

Получили, что                 ∘
∠KCD  =∠CKD  = 55.  Тогда △KDC  — равнобедренный, в котором KD  =CD.

В итоге,

AD =AK + KD = BC + CD

______________________________________________________________________________________________________________________________________________________

Второе решение.

PIC

Отложим на прямой BC  за точку C  отрезок CP,  равный CD.

Т.к. AD ∥BC, ∠ABC = 125∘, ∠CDA = 70∘,  можем получить

        ∘          ∘
∠BAD = 55 ,∠DCP = 70

Треугольник DCP  равнобедренный, т.к. CD = CP,  поэтому

              180∘− ∠DCP-   ∘
∠CDP = ∠CPD =      2     = 55

Получаем, что

                        ∘
∠ADP  =∠CDA  +∠CDP  =125

Следовательно, ∠BAD + ∠CDA = 180∘,  значит, AB ∥DP.  Но мы знаем, что AD ∥ BC,  поэтому ABPD  — параллелограмм. Значит,

AD =BP = BC + CP =BC + CD

Ошибка.
Попробуйте повторить позже

Задача 26#89111Максимум баллов за задание: 7

Основания трапеции равны a  и b.  Найдите отрезок, соединяющий середины оснований, если диагонали трапеции перпендикулярны.

Подсказки к задаче

Подсказка 1

Как воспользоваться условием на диагонали трапеции для решения задачи? Определите расположение точки пересечения диагоналей O относительно отрезка, соединяющего середины оснований E и F.

Подсказка 2

Точка O будет лежать на отрезке EF! И этот факт всегда выполняется в трапеции! Докажите это воспользовавшись подобием треугольников. После этого длину EF можно будет вычислить, как сумму EO + OF.

Подсказка 3

Если E, F --- середины оснований трапеции BC, AD, то докажите подобие треугольников BOC и AOD, после чего докажите подобие BOE и DOF. Тогда равны углы BOE = DOF и O лежит на EF. Легко теперь найти EO, OF --- медианы к основаниям в прямоугольных треугольниках BOC, AOD.

Показать ответ и решение

Пусть нам дана трапеция ABCD  (BC,AD  — ее основания). Точки E,F  — середины оснований BC  и AD  соответственно, O  — точка пересечения диагоналей трапеции. Докажем, что O  лежит на отрезке EF  .

PIC

Треугольники △BOC,△DOA  подобны по двум углам. Тогда:

BO-= BC-
DO   AD

Но

BC-  BC2-  BE-
AD = AD2-= DF

Значит, △BOE ∼ △DOF  в силу равенства ∠EBO  =∠F DO  и отношению сторон:

BO-= BE-
DO   DF

Из подобия получаем равенство углов ∠BOE = ∠DOF  , что говорит о том, что E,O,F  лежат на одной прямой.

Диагонали трапеции перпендикулярны, поэтому △BOC, △AOD  прямоугольные. В прямоугольных треугольниках медиана к гипотенузе равны ее половине, то есть

OE = BC-= a
      2   2

OF = AD-= b
      2   2

              a+b-
FE =OE + OF =  2
Ответ:

 a-+b
  2

Ошибка.
Попробуйте повторить позже

Задача 27#89113Максимум баллов за задание: 7

В трапеции ABCD  основание BC  в два раза меньше основания AD.  Из вершины D  опущен перпендикуляр DE  на сторону AB.  Докажите, что CE = CD.

Подсказки к задаче

Подсказка 1

Какие бывают способы доказать равенство сторон? Самый очевидный - найти их длины. Менее очевидный - доказать равнобедренность треугольника через то, что в нем медиана, высота и биссектриса к основанию совпадают. Вычислять длины CE, CD, сложно, поэтому попробуйте применить второй подход. Еще полезно поразмышлять, как использовать условие, что длина BC в 2 раза меньше длины AD. Может попытаться получить равные отрезки?

Подсказка 2

Пусть O - середина отрезка ED. В какой тогда точке должна пересекать прямая CO основание AD, чтобы ECD был равнобедренным?

Подсказка 3

Чтобы ECD был равнобедренным, CO должна быть медианой и высотой. Но тогда прямая CO будет содержать среднюю линию треугольника AED, то есть пересечет AD в середине. Осталось понять, почему это будет правдой?

Показать доказательство

Пусть M  — середина основания AD.  По условию основание BC  в два раза меньше AD,  то есть:

     1
AM = 2AD = BC

PIC

Тогда ABCM  — параллелограмм, потому что стороны AM, BC  равны и параллельны. Следовательно, будут параллельны AB ||CM.  Так как DE  — высота к AB,  получаем DE ⊥CM.

При этом CM  — прямая, содержащая среднюю линию в треугольнике AED,  так как параллельна AE  и проходит через середину AD.  Следовательно, CM  проходит через точку O  — середину DE.

В итоге, CO  — высота и медиана треугольника DCE.  Значит, он равнобедренный и CE = CD.

Ошибка.
Попробуйте повторить позже

Задача 28#89600Максимум баллов за задание: 7

Дан параллелограмм ABCD  (AB ⁄= BC).  Точки E  и G  на прямой CD  таковы, что AC  является биссектрисой каждого из углов EAD  и BAG.  Прямая BC  пересекает AE  и AG  в точках F  и H  соответственно. Докажите, что прямая F G  проходит через середину отрезка HE.

Подсказки к задаче

Подсказка 1

У нас имеется параллелограмм и биссектрисы, а это, значит, равные углы. Попробуем поискать равные углы, дающие пользу.

Подсказка 2

Так, можно обнаружить, что треугольники GAC и FAC являются равнобедренными.

Подсказка 3

Мы получили, что прямая FG - серединный перпендикуляр к AC, осталось найти связь с HE.

Подсказка 4

Полезно рассмотреть треугольники HFA и EFC. Все присутствующие в них точки нас интересуют, а у треугольников много равных элементов.

Показать доказательство

Поскольку ∠ACG = ∠CAB = ∠GAC,  треугольник GAC  — равнобедренный, GA = GC.  Из

∠FEC = ∠FAB = ∠CAB − ∠CAF =∠GAC  − ∠DAC =∠GAD  =∠AHF

и △HAF  =△EF C,  получаем ∠GAF = ∠GCF.  Так, ∠FAC = ∠FCA,  а значит FAC  — равнобедренный, FA = FC.  Итак, GA = GC,FA = FC,  получается FG  — серединный перпендикуляр к AC.  Поскольку

∠HAF  =∠ECF, FA =F C,∠HFA = ∠EFC

то по признаку равенства треугольники HFA = EFC ⇒ HA = CE.  Из CHAA-= GCCE-,  получаем AC ∥HE  GH = GE.  Следовательно, FG − серединный перпендикуляр к HE,  а значит, проходит через середниу отрезка HE.

PIC

Ошибка.
Попробуйте повторить позже

Задача 29#91312Максимум баллов за задание: 7

В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2. Найдите площадь трапеции.

Показать ответ и решение

Пусть дана трапеция ABCD,  MK  — отрезок, соединяющий середины оснований BC  и AD,  O  — точка пересечения диагоналей  AC  и BD.

PIC

Тогда, так как BC ||AD,  треугольники △BOC  и △DOA  подобны. OM  и OK  — соответствующие элементы в подобных треугольниках (медианы). Значит, ∠BON = ∠DOK.  Следовательно, точки M,O  и K  лежат на одной прямой.

Проведём CE ||BD,  где точка E  лежит на продолжении стороны AD.  Тогда, так как BD ||CE  и BC ||DE,  BCED  — параллелограмм.

Так как диагональ в параллелограмме делит его на 2  равных треугольника,

S△BCD = S△EDC

Заметим, что S△ABC = S△BCD,  так как они имеют общее основание BC,  а вершины A  и D  лежат на прямой, параллельной основанию BC  (что означает, что их высоты из точки B  будут равны). Получаем:

S△ABC = S△BCD =S△EDC

Значит,

SABCD = S△ABC + S△ACD =S△EDC  +S△ACD = S△ACE

Таким образом, нам нужно найти площадь △ACE,  у которого известны 2  стороны: AC =3  по условию, CE = BD = 5,  так как BCED  — параллелограмм.

Проведём CP ||MK, P  лежит на AE.  Тогда, так как CP ||MK  и KP||MC,  MCP K  — параллелограмм. Значит,

AP = AK +KP = 1AD + 1BC = 1AD − 1BC + BC =KD − KP + DE = PE
              2     2     2     2

Таким образом, AP = PE,  значит, CP  — медиана △ACE.  Получается, в △ACE  нам также известна медиана: CP = MK  =2.

Сделаем выносной чертёж △ACE.

PIC

Продлим медиану CP  на свою длину — точка F.  Тогда, четырёхугольник ACEF  — параллелограмм (диагонали точкой пересечения делятся пополам). Значит,

FE =AC = 3, FA = EC =5, CP =PF = 2.

Заметим, что S△ACE = S△CEF,  так как △ACP = △F EP.  Значит, нам нужно найти площадь △CEF.  Так как его стороны равны F E = 3,CF =4,CE = 5,  то по обратной теореме Пифагора этот треугольник прямоугольный. Значит, его площадь равна

        1          4⋅3
S△CEF = 2 ⋅CF ⋅FE = 2 = 6

Тогда, SABCD = SACE = SCEF = 6.

Ответ:

6

Ошибка.
Попробуйте повторить позже

Задача 30#96590Максимум баллов за задание: 7

Докажите, что в гармоническом четырёхугольнике касательные к противоположным вершинам пересекаются на диагонали (или параллельны ей).

Показать доказательство

Так как угол между касательной и хордой равны, то

∠PBC = ∠PCA  ∠P DA =∠P DA

PIC

Тогда можно заметить:

                   P B  P C
△PBA ∼ △P CB  =⇒   BA- =CB-

Перепишем отношение PPBC-= BCAB-  .

Аналогично рассмотрим подобие △PDA ∼ △P CD :

PD-= PC-  =⇒   PD-= DA-.
DA   CD        PC   CD

Так как отрезки касательных равны, то есть

P D= PB   =⇒   BA-= DA-
               CB   CD

Из этого равенства получаем:

BA ⋅CD = CB⋅DA   =⇒   Четы рёхугольник гармонический.

Теперь докажем то, что требуется в задаче. Докажем от обратного: пусть касательные пересекаются не на диагонали. Тогда докажем, что точка E  и есть точка A.

PIC

Мы уже доказали, что, если касательные пересекаются на диагонали, то это гармонический четырёхугольник, следовательно AB ⋅CD = AD ⋅BC.  Также верно, что EB ⋅CD  =ED ⋅DC,  так как это гармонический четырёхугольник. Запишем это в виде отношения:

AB-= BC-= EB-
AD   CD   ED

Рассмотрим равенство AABD-= EEBD.  Так как AB < EB  , a AD >ED  , то дробь AABD-< EEBD-  , но такое невозможно. Поэтому точки  A  и E  совпадают. Значит касательные пересекаются на диагонали гармонического четырёхугольника.

Ошибка.
Попробуйте повторить позже

Задача 31#96591Максимум баллов за задание: 7

Продлим чевиану AL  треугольника ABC  до пересечения с описанной окружностью в точке D.  Докажите, что четырёхугольник ABDC  гармонический тогда и только тогда, когда AL  — симедиана.

Показать доказательство

1) Докажем, что если AL  — симедиана, то ABCD  — гармонический.

Пусть AC = b  и AB = c.

PIC

Вспомним следующее свойство симедианы: симедиана делит противоположную сторону в отношении квадратов прилежащих, то есть:

BL-= AB2-= c2
LC   AC2   b2

Обозначим ∠BAL = α,∠LAC = β,∠BLC  =φ.  По теореме синусов для треугольника BAL :

--BL--- = --AB---
sin∠BAL    sin∠BLA

BL--  -c--
sinα = sinφ  (1)

По теореме синусов для треугольника CAL :

--CL---   --AC---  -----AC------  --AC---
sin∠CAL  = sin∠ALC = sin180∘− ∠ALB = sin∠ALB

CL     b
sinβ-= sinφ- (2)

Поделим неравенство (1)  на неравенство (2) :

BL-sinβ = csinφ-
CL sinα   bsinφ

sinβ-= c⋅ CL
sinα   b BL

sinβ   c b2  b
sinα-= b ⋅c2 = c

Заметим, что ∠BCD = ∠BAD  =α  и ∠DBC  = ∠DAC = β  как вписанные, опирающиеся на одну и ту же дугу. Теперь распишем теорему синусов для треугольника BCD :

--CD----  --BD----
sin∠DBC  = sin∠BCD

CD    BD
sinβ-= sinα-

CD- = sinβ
BD   sinα

-CD = b
BD    c

Отсюда

CD-= AC-
BD   AB

То есть четырёхугольник ABCD  гармонический по определению.

_________________________________________________________________________________________________________________________________________________________________________________

2) Предположим, что для гармонического четырёхугольника ABCD  верно, что AD  не является симедианой для треугольника ABC.  Тогда проведём симедиану AD′ треугольника ABC,  где точка D′ лежит на окружности, описанной около ABC.  Из пункта 1 четырёхугольник ABCD ′ — гармонический.

Проведём касательные к окружности, описанной около ABC,  в точках B  и C.  Пусть эти касательные пересекаются в точке K.  Тогда точка D  — это точка пересечения AK  и описанной окружности, так как ABCD  — гармонический, а так же точка D ′ является точкой пересечения AK  и этой окружности, так как ABCD ′ — гармонический. Получается, прямая AK  пересекает окружность в трёх точках: D,D ′ и A,  что невозможно. Получили противоречие, значит, если четырёхугольник ABCD  гармонический, то AD  — симедиана ABC.

Ошибка.
Попробуйте повторить позже

Задача 32#96592Максимум баллов за задание: 7

Обозначим через N  середину диагонали AC  вписанного четырёхугольника ABCD.  Докажите, что четырёхугольник ABCD  гармонический тогда и только тогда, когда ∠BNC  = ∠DNC.

Показать доказательство

Сначала докажем, что если четырёхугольник гармонический, то ∠BNC  =∠DNC,  где N  — середина диагонали AC.

Так как ABCD  — гармонический, то BD  является симедианой треугольников ABC  и ADC.

PIC

Точка N  — середина AC, поэтому BN  — медиана ABC,  а DN  — медиана ADC.  Отсюда

∠ABN = ∠DBC = α  и ∠ADN  = ∠BDC = β,

так как медиана и симедина симметричны относительно биссектрисы. Так же заметим, что

∠BAC = ∠DBC = α  и ∠CAD  =∠BDC  = β,

как вписанные углы, опирающиеся на одну дугу.

∠BNC  — внешний угол для треугольника ABN,  поэтому

∠BNC = ∠ABN + ∠BAC = α +β

Аналогично, ∠DNC  — внешний угол для треугольника ADN,  поэтому

∠DNC = ∠ADN  +∠CAD  =α +β

Отсюда, ∠BNC  =∠DNC.

______________________________________________________________________________________________________________________________________________________

Предположим, что вписанный четырёхугольник ABCD,  для которого верно, что ∠BNC = ∠DNC,  где N  — середина диагонали  AC,  не является гармоническим. Тогда построим гармонический четырёхугольник ABCD  ′.  Пусть точка K  — точка пересечения касательных к описанной окружности в точках A  и C.  Тогда точка D′ — это точка пересечения прямой KB  и описанной окружности.

Так как ABCD ′ — гармонический, и N  — середина диагонали AC,  то ∠BNC = ∠D′NC,  как было доказано выше. Отсюда, ∠DNC  = ∠D′NC,  что невозможно, как как точки D  и D′ различны. Получили противоречие, следовательно, если для вписанного четырёхугольника ABCD  верно, что ∠BNC = ∠DNC,  где N  — середина диагонали AC,  то этот четырёхугольник — гармонический.

Ошибка.
Попробуйте повторить позже

Задача 33#97697Максимум баллов за задание: 7

На стороне AB  параллелограмма ABCD  отмечена середина M.  Известно, что угол ∠CMD  прямой. Найдите отношение сторон параллелограмма. В ответ запишите AB-
BC .

Показать ответ и решение

Отметим на CD  середину N,  проведём медиану MN  треугольника CMD.

PIC

Раз ∠CMD  прямой, значит, треугольник CMD  прямоугольный, поэтому MN  =CN = DN,  а так как CD =CN + DN  и MN  = BC  как средняя линия параллелограмма, то AB-  2BC-
BC = BC = 2.

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 34#97701Максимум баллов за задание: 7

В трапеции ABCD  диагонали пересекаются в точке E.  Прямая, проведенная через точку E,  параллельная CD,  пересекает AD  в точке F.  Известно, что BD = AD,  а FD =3.  Найдите длину BE.

Показать ответ и решение

PIC

Поскольку AD ∥CB,  треугольники EAD  и ECB  подобны, и потому

BE-= BC-
DE   AD

Достроим треугольник BCD  до параллелограмма BCDK.  Тогда треугольник DEF  и DBK  подобны, поэтому

DF- = DK-
DE    DB

Наконец, поскольку DK = BC  и DB =DA,  получаем

DF-  DK-   BC-  BE-
DE  = DB = AD = DE

Отсюда следует, что BE = DF = 3.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 35#31336Максимум баллов за задание: 7

Две противоположные стороны выпуклого четырехугольника равны и не параллельны. Докажите, что прямая Ньютона данного четырёхугольника образует с этими сторонами равные углы.

Замечание. Прямая Ньютона — это прямая, которая соединяет середины двух диагоналей выпуклого четырёхугольника, отличного от параллелограмма.

Подсказки к задаче

Подсказка 1

Нам уже даны середины диагоналей, поэтому логично рассмотреть ещё и середины сторон. Рассмотрите четырёхугольник с вершинами в серединах диагоналей и в серединах двух неравных сторон. Что вы можете про него сказать?

Подсказка 2

Это ромб! Ведь его стороны являются средними линиями соответствующих треугольников.

Подсказка 3

Что мы знаем про диагональ ромба?

Подсказка 4

Она составляет равные углы с его сторонами! А теперь поймите, как связаны его стороны со сторонами исходного четырёхугольника, и задача решится.

Показать доказательство

Пусть M  , K  , X  , Y  — середины AB  , CD  , AC  и BD  в четырёхугольнике ABCD  , где AD =BC = a  .

Проведём средние линии треугольников ABD  и ACD  , параллельные AD  — их длина будет a
2  , аналогично длина средних линий MX  и XK  также будет a
2  .

PIC

В итоге MY KX  — ромб, в котором XY  , соединяющая середины диагоналей четырёхугольника, — диагональ, тогда она образует равные углы со сторонами MY  и MX  , а раз так, то и с параллельными им AD  и BC.

Ошибка.
Попробуйте повторить позже

Задача 36#58008Максимум баллов за задание: 7

Дан прямоугольник ABCD  , точка M  — середина стороны CD  , точка H  — основание перпендикуляра, опущенного из вершины B  на прямую AM  . Оказалось, что H  лежит на отрезке AM  . Докажите, что треугольник BCH  — равнобедренный.

Показать доказательство

Первое решение.

PIC

Пересечём BC ∩AM  =X  . Поскольку DM  =MC, AD ∥BC  , то CX = AD = BC  (равны △ADM  =△CXM  ). Отсюда HC  — медиана прямоугольного треугольника BHX  , следовательно, HC = BX ∕2 =BC  , имеем равнобедренность. ______________________

Второе решение.

PIC

Заметим, что                  ∘   ∘    ∘
∠MCB  +∠BHM  = 90 +90 = 180,  поэтому BHMC  — вписанный. Опирающиеся на одну и ту же дугу вписанные углы равны ∠BHC  = ∠BMC  . Так же обоснуем равенство симметричных углов              BC         AD
∠BMC  = arctg1∕2CD-= arctg1∕2CD-= ∠AMD.  Далее используем равенство накрест лежащих углов ∠AMD = ∠BAM  . И наконец, из прямоугольных треугольников ∠BAM  = 90∘ − ∠BXA =∠HBX  .

В итоге всей этой цепочки получили равенство углов BHC  и HBC  , откуда и следует равнобедренность треугольника BCH.

Ошибка.
Попробуйте повторить позже

Задача 37#58322Максимум баллов за задание: 7

В прямоугольнике ABCD  биссектрисы угла B  и внешнего угла D  пересекают сторону AD  и прямую AB  в точках K  и M  соответственно. Докажите, что отрезок KM  перпендикулярен отрезку диагонали BD  прямоугольника.

Подсказки к задаче

Подсказка 1

В этой задаче попробуем использовать такой трюк - докажем, что К - точка пересечения двух высот треугольника BDM. Тогда из этого будет следовать, что МК - третья высота, перпендикулярная BD.

Подсказка 2

Для этого нам потребуется доказать, что BK и DA это высоты! Заметим, что DA очевидно является высотой, ведь это сторона прямоугольника. Осталось разобраться с ВК!

Показать доказательство

Рассмотрим треугольник MBD.  В нем DA  является высотой, так как DA ⊥ AB.

Докажем, что BK  ⊥DM.  По условию DM  — биссектриса внешнего угла D  прямоугольника, значит,           ∘
∠ADM  = 45.  Также BK  — биссектриса угла B  прямоугольника, значит,          ∘
∠ABK  = 45.

По сумме углов треугольника ADM  имеем

          ∘                   ∘    ∘   ∘    ∘
∠AMD  = 180 − ∠MAD  − ∠ADM = 180 − 90 − 45 =45

Пусть N  — точка пересечения прямых DM  и BK.  Тогда по сумме углов треугольника BMN  имеем

          ∘                    ∘   ∘    ∘   ∘
∠BNM  = 180 − ∠BMN  − ∠MBN  =180 − 45 − 45 =90

PIC

Тогда BN  и DA  — высоты треугольника MBD,  пересекающиеся в точке K.  Значит, MK  — третья высота этого треугольника, то есть MK ⊥ BD.

Ошибка.
Попробуйте повторить позже

Задача 38#63663Максимум баллов за задание: 7

На сторонах AB  и BC  параллелограмма ABCD  расположены точки N  и M  соответственно, причём AN :NB = 3:2,BM  :MC = 2:5.  Прямые AM  и DN  пересекаются в точке O  . Найдите отношения OM :OA  и ON  :OD.

Подсказки к задаче

Подсказка 1

Сделаем классическое для подобной картинки доп. построение: продлим DN до пересечения с продолжением BC. Назовём Т полученную точку. Пусть ВМ = 2а, тогда МС = 5а. Теперь будем работать с подобиями! Что можно сказать об отношении ВТ к AD? Тогда как выразить ВТ через а?

Подсказка 2

Теперь мы можем выразить ТМ через а и найти отношение ТМ к AD. А как мы можем использовать это отношение для нахождения ОМ:ОА? Может быть найдётся какая-то пара подобных треугольников?

Подсказка 3

Теперь точно так же мы можем найти и ON:OD! Обозначим BN = 2x. Теперь нужно просто продлить АМ до пересечения с продолжением CD (назовём точку пересечения К), найти СК:АВ через подобие, далее выразить DК через х и найти искомое отношение, выделив ещё одну пару подобных треугольников.

Показать ответ и решение

Продолжим DN  до пересечения с прямой BC  в точке T.  Положим BM  =2a  , CM = 5a.

PIC

Из подобия треугольников TNB  и DNA  (коэффициент 2
3  ) находим, что

     2     2     2     14
T B = 3AD = 3BC = 3 ⋅7a =-3 a,

а из подобия треугольников TOM  и DOA  — что

            14-
OM- = TM- = 3 a-+2a-= 20.
 OA   AD      7a    21

Пусть P = AM ∩ CD  , тогда PPCD-= MACD-= 57  , откуда PD = 72CD = 72AB = 356 AN  , поскольку AN = 35AB  . Тогда из подобия ANO  и ODP  имеем ON-= AN-= 6-.
OD   PD   35

Ответ:

 20:21  ; 6:35

Ошибка.
Попробуйте повторить позже

Задача 39#67146Максимум баллов за задание: 7

В параллелограмме ABCD  выбрали точку P  таким образом, что ∠PAD = ∠PCD.  Докажите, что ∠P BC = ∠PDC.

Подсказки к задаче

Подсказка 1

Сложно доказывать равенство углов, которые расположены не "рядом". Поэтому давайте точку P перенесём на вектор AD, и получим точку E. Куда тогда перекидываются наши углы?

Подсказка 2

По построению APED - параллелограмм. Поэтому углы PAD и PED равны. Что это значит?

Подсказка 3

Четырёхугольник PCED - вписанный! Теперь легко понять, что происходит с парой углов, равенство которых нужно доказать.

Показать доказательство

Первое решение.

Проведем P E = AD  и PE||AD :

PIC

Тогда AP ED  — параллелограмм, поэтому ∠P AD =∠P ED.

Так как ∠PCD  =∠P ED,PCED  — вписанный четырехугольник и ∠PDC = ∠PEC;

Так как PE = BC,BCEP  — параллелограмм, следовательно ∠P EC =∠P BC,  поэтому ∠PBC = ∠PDC.

______________________________________________________________________________________________________________________________________________________

Второе решение.

Через точку P  проведем NL ||AB  и KM  ||BC :

PIC

Так как ABCD  — параллелограмм, то ∠CMK  =∠MDA  = ∠PNA.

Заметим, что △ANP  ∼△P MC  по двум углам и AN   PN
CM-= PM-.  А так как BL =AN, LP = CM, PN = MD,  то

BL   AN   P N   MD
LP-= CM-= PM- = PM-.

Учитывая, что ∠BLP = ∠PND,  получаем △BLP ∼ △P MD  по двум пропорциональным сторонам и углу между ними. Следовательно, ∠P BC =∠P DC.

Ошибка.
Попробуйте повторить позже

Задача 40#67655Максимум баллов за задание: 7

Пусть ABCD  — параллелограмм, отличный от прямоугольника, а точка P  выбрана внутри него так, что описанные окружности треугольников PAB  и PCD  имеют общую хорду, перпендикулярную AD.  Докажите, что радиусы данных окружностей равны.

Источники: ММО-2023, 11.2 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Часто в геометрии полезно избавиться от ненужных объектов на картинке. В данном случае это общая хорда окружностей. Как можно переформулировать то что она перпендикулярна AD?

Подсказка 2

Это равносильно тому, что линия центров окружностей параллельна AD!

Подсказка 3

Теперь посмотрите на картинку повнимательнее: между двумя окружностями, которые должны быть равны, есть много общего...

Подсказка 4

Центры обеих окружностей лежат на линии центров, параллельной AD, а также центр первой лежит на...

Подсказка 5

Серединном перпендикуляре к AB! А центр второй - на серединном перпендикуляре к CD. Теперь просто нужно понять, что картинка (AB и центр первой окружности) равна картине (CD и центр второй окружности).

Показать доказательство

PIC

Первое решение.

Заметим, что линия центров O1O2  перпендикулярна общей хорде данных окружностей, а значит параллельна прямым AD  и BC.  Пусть M  - середина отрезка AB,  N  - середина отрезка CD.  Тогда O1M  ⊥AB,  O2N ⊥CD  и, поскольку AB||CD,  прямые O1M  и O2N  параллельны. Далее, O1O2||AD  и при этом AD ||MN,  поэтому O1O2||MN.  Заключаем, что четырёхугольник O1MNO2  — параллелограмм по определению, следовательно O1M = O2N.  Кроме того, поскольку отрезки MB  и NC  равны, то по двум катетам будут равны прямоугольные треугольники O1MB  и O2NC,  следовательно, равны их гипотенузы O1B  и O2C,  являющиеся также радиусами наших окружностей, что и требовалось доказать

Первое решение.

Предположим противное, радиусы окружностей ω1  и ω2,  описанных около треугольников PAB  и P CD  соответственно, различны.

При параллельном переносе на −−→
CB  отрезок CD  перейдет в отрезок AB,  окружность ω2  перейдёт в окружность ω3,  а прямая O1O2  перейдёт в себя. Причём ω3  не может совпадать с ω1,  поскольку их радиусы различны. Поэтому линия центров O3O1,  совпадающая с прямой O1O2,  перпендикулярна общей хорде AB.  Таким образом, прямая AB  параллельна общей хорде окружностей ω1  и ω2  и, следовательно, перпендикулярна прямой AD.  Но тогда параллелограмм ABCD  является прямоугольников, что противоречит условию задачи. Следовательно, радиусы окружностей ω1  и ω2  равны.

Рулетка
Вы можете получить скидку в рулетке!