Тема СТЕРЕОМЕТРИЯ

Счёт площадей и объёмов .03 Пирамиды и призмы с общим основанием

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела стереометрия
Разделы подтемы Счёт площадей и объёмов
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Ошибка.
Попробуйте повторить позже

Задача 2#37324

Докажите, что биссектор (плоскость, проходящая через ребро двугранного угла и делящая его на два равных двугранных угла) двугранного угла при ребре тетраэдра делит противоположное ребро на части, пропорциональные площадям тех граней тетраэдра, которые лежат на гранях этого двугранного угла.

Показать ответ и решение

PIC

Пусть XT  — высота треугольника ACX  , а угол между плоскостями ABC  и ACD  равен 2α.

С одной стороны (расстояние от X  до грани по следствию из теоремы о трёх перпендикулярах падает на перпендикуляр, восставленный из точки T  в плоскости соответствующей грани):

VACDX-= h(X,ACD-)⋅SACD-= XT-sinα-⋅SACD = SACD-
VACBX   h(X,ABC )⋅SABC   XT sin α⋅SABC   SABC

С другой стороны (отношение расстояний до общей грани переписывается через отношение наклонных из подобия прямоугольных треугольников):

VACDX-   h(D,ACX-)⋅SACX-  h(D,ACX-)  XD-
VACBX  = h(B,ACX )⋅SACX = h(B,ACX ) = XB
Ответ:

что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 3#63817

В основании четырёхугольной пирамиды ABCDS  лежит параллелограмм ABCD  . На ребре SB  отмечена точка E  , так что SE :EB = 2:1  . На ребре SD  отмечена точка F  , так что SF :FD = 1:2  . Найдите отношение, в котором плоскость AEF  делит объём пирамиды.

Источники: ДВИ - 2020, вариант 205, задача 6 (pk.math.msu.ru)

Показать ответ и решение

Проведём через точки B,C,D  соответственно прямые l ,l ,l
B  C D  , параллельные AS  . Обозначим через B′,C′,D′ соответственно точки пересечения плоскости AEF  с прямыми lB,lC  , lD  .

PIC

Тогда BB ′ = 12AS,DD ′ =2AS  , откуда CC′ = 52AS  . Пусть G− точка пересечения плоскости AEF  с CS  . Тогда SG :GC = 2:5  . Далее,

VAEGFS = VAEFS +VEGFS = 2⋅ 1 ⋅VABDS + 2⋅ 1⋅ 2⋅VBCDS =
                       3 3         3  3 7

= 2⋅ 1+ 2⋅ 1 ⋅ 2⋅ 1V   = 1V     .
  3  3  3 3  7 2 ABCDS   7 ABCDS

Стало быть, искомое отношение равно 1:6.

Ответ:

 1 :6

Ошибка.
Попробуйте повторить позже

Задача 4#43960

Основание треугольной пирамиды ABCD  — правильный треугольник ABC.  Объём пирамиды равен 2√5
 3  , а её высота, проведённая из вершины D  , равна 3.  Точка M  — середина ребра CD.  Известно, что радиусы сфер, вписанных в пирамиды ABCM  и ABDM  , равны между собой.

(a) Найдите возможные значения угла между гранями пирамиды при ребре AB.

(b) Найдите все возможные значения длины ребра CD  , если дополнительно известно, что грани BCD  и ABC  взаимно перпендикулярны.

Источники: Физтех-2017, 11.7 (см. olymp.mipt.ru)

Показать ответ и решение

Воспользуемся формулой радиуса вписанной сферы r= 3V
   S  , где V  — объём, а S  — площадь поверхности пирамиды. Объёмы пирамид ABCN  и ABDM  равны (грань ABM  общая, а вершины C  и D  равноудалены от плоскости ABM  ); кроме того SADM = SACM  и SBDM  =SBCM  (медиана делит площадь треугольника пополам). Значит, равенство сфер, вписанных в пирамиды ABCN  и ABDM  , эквивалентно условию SABD = SABC  или равенству высот, проведённых к стороне AB  в треугольниках ABD  и ABC  .

PIC

Пусть DH  высота пирамиды, а DK  высота в треугольнике ABC  . Объём пирамиды равен √253-  , а её высота из вершины D  равна 3, то есть DH  . Значит, площадь основания пирамиды равна 2√53  . Тогда сторона основания AB = 1√03  , а высота треугольника ABC  равна 5. Значит, DK  также равно 5. Из прямоугольного треугольника DHK  находим KH = √KH2-−-DH2-= 4  , т.е. точка H  находится на расстоянии 4 от прямой AB  (H  лежит на одной из двух прямых, параллельных AB  , на расстоянии 4 от неё). Тем самым, угол между гранями при ребре AB  равен arccos± 4
      5  .

PIC

Из условия, что грани BCD  и ABC  взаимно перпендикулярны, следует, что H  лежит на BC  . Так как KH = 4  , то       8
HB = √3  . Значит CH = CB ±HB  = 2√3  или 1√83  . Тогда       ---------- ∘ --
CD = √CH2 +HD2  =  331  или   --
3√ 13  .

Ответ:

 (a) arccos±4
         5

  √3√1
(b)  3  или  √--
3 13

Ошибка.
Попробуйте повторить позже

Задача 5#51629

На ребре CC
   1  правильной треугольной призмы ABCA  B C
     1 1 1  выбрана точка M  так, что центр сферы, описанной около пирамиды MAA1B1B,  лежит в грани AA1B1B.  Известно, что радиус сферы, описанной около пирамиды MABC,  равен 5,  а ребро основания призмы равно  √-
4 3  . Найдите:

(a) отношение объёма пирамиды MAA1B1B  к объёму призмы

(b) длину отрезка MC

(c) площадь полной поверхности призмы

Источники: Физтех-2012, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Введём обозначения: K  — центр грани ABC; L− середина ребра AB; Q  — центр сферы, описанной около пирамиды MAA1B1B  (т.е. Q  — центр грани AA1B1B  ); O  — центр сферы, описанной около пирамиды MABC  .

(a) -VMABC---= 1 ⋅ MC-;-VMA1B1C1-= 1⋅ MC1-⇒ VMABC+VMA1B1C1 = 1⋅ MC+MC1 = 1,
VABCA1B1C1  3  CC1  VABCA1B1C1   3 CC1      VABCA1B1C1     3   CC1     3  3начит, объём пирамиды MAA1B1B  составляет две трети объёма призмы.

(b) Сторона равностороннего треугольника ABC  равна  √-
4 3  , следовательно,       √-  1√-
CK  =4 3 ⋅ 3 = 4  , как радиус описанной окружности.

Рассмотрим прямоугольную трапецию CKOM  . В ней известны стороны CK  =4,OM = 5  и диагональ OC = 5.  По теореме Пифагора из треугольника OCK  находим, что OK = 3.  Опустим из точки O  перпендикуляр OH  на отрезок MC  . Тогда MC  =2 ⋅CH  =2⋅KO = 6.

(c) Обозначим BB1 =h.  Тогда

           ∘ ------                        ∘-----------
    h        h2         ∘ --2-----------2   ( h   )2
QL = 2,QB =   4 + 12,QM  =  CL + (QL− MC ) =    2 − 6 + 36

Отрезки QB  и QM  равны как радиусы сферы. Решая получающееся уравнение, находим, что h = 10.  Тогда площадь поверхности призмы       √-   √-         √-    √ -
S = 2⋅43⋅(4 3)2 +3⋅10⋅4 3= 144 3.

Ответ:

(a) 2:3

(b) 6

(c) 144√3

Ошибка.
Попробуйте повторить позже

Задача 6#90596

На ребре AS  треугольной пирамиды SABC  отмечены такие точки M  и N  , что AM = MN  =NS  . Найдите площадь треугольника NBC  , если площади треугольников ABC,MBC  и SBC  равны 1,2  и √--
 37  соответственно.

Показать ответ и решение

Пусть S = 1,S = 2,S ,S = √37
 1     2    3  4  — площади треугольников ABC, MBC, NBC,SBC  соответственно, а h ,h,h ,h
 1 2  3 4  — их высоты, опущенные на общее основание BC :

PIC

Обозначим через A′ , B′,C′,S′,M ′,N′ ортогональные проекции точек A,B,C  , S,M,N  соответственно на некоторую плоскость, перпендикулярную ребру BC :

PIC

Точки  ′
B и  ′
C совпадают, причём

          ′ ′    ′ ′   ′′
         A M = M N  =N S = a
A′B′ = h1, M′B′ = h2, N′B′ = h3, S′B ′ =h4

Учитывая, что   ′ ′
M B и   ′′
N B — медианы треугольников  ′ ′ ′
A BN и   ′ ′′
M  BS , имеем

 2  2    2    2  2   2    2
h1+ h3 − 2h2 = 2a = h2 +h4− 2h3 ⇒       ∘ ----------
                   2   2   2   2        2  h24-− h21
               ⇒ 3h3 = 3h2+ h4− h1 ⇒ h3 = h2 +  3

А так как площади S1,S2,S3,S4  пропорциональны высотам h1,h2  , h3,h4  с коэффициентом k= BC2-  , получаем

         ∘-----------2------2  ∘ -----2---2- ∘--------
S3 = kh3 = (kh2)2+ (kh4)-−3-(kh1)-=  S22 + S4 −3 S1-= 4+ 37−3-1= 4
Ответ: 4
Рулетка
Вы можете получить скидку в рулетке!