Тема СТЕРЕОМЕТРИЯ

Экстремальные задачи в стерео .03 Оптимальная конструкция

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела стереометрия
Разделы подтемы Экстремальные задачи в стерео
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#104698

Гора имеет форму прямого кругового конуса с вершиной в точке C  . Точка O  — центр основания, точка A  лежит на окружности основания конуса, а точка B  — на отрезке CA  , причем CA =180,AB = 20,OA= 30  . Железная дорога проложена по кратчайшему пути вокруг горы из точки A  в точку B  . Точка H  — ближайшая к вершине горы из всех точек железной дороги. Найдите длину пути BH  (по железной дороге).

Источники: ОММО - 2025, номер 8 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В условии сказано про кратчайший путь, но не сразу понятно, как изобразить его на конусе. Что хочется сделать, чтобы всё-таки нарисовать этот путь на рисунке?

Подсказка 2

Да! Рассмотрим развёртку боковой поверхности конуса. Как тогда будет выглядеть кратчайший путь?

Подсказка 3

Верно! Считается известным, что самый короткий путь от точки до прямой — это перпендикуляр, опущенный на эту прямую и проходящий через данную точку. Поэтому СH — высота треугольника ACB. Теперь нужно аккуратно посчитать.

Подсказка 4

В треугольнике ABC известны две стороны, а угол опирается на дугу окружности радиуса CA, длину которой мы можем найти. Чему тогда равен этот угол? Какую теорему теперь можно применить?

Подсказка 5

Длина окружности основания равна 2πOA. Тогда ∠ACB = 2πOA/CA = 60π/180 = π/3 = 60°. Теперь применим теорему косинусов для треугольника ABC и найдем AB. Теперь можем применить теорему синусов. Синус какого угла хочется выразить?

Подсказка 6

Да! Запишем теорему синусов для ∠B и ∠C и найдём sin∠B. Осталось не забыть, что треугольник CBH — прямоугольный. Значит, зная угол и сторону, можно найти и всё остальное!

Показать ответ и решение

PIC

Кратчайшим путём вокруг горы на развёртке конуса будет отрезок AB  . Точка H  — ближайшая к вершине C  , а значит CH  — высота в треугольнике ABC  . Длина окружности основания равна 2πOA = 2π  . 30 =60π  , поэтому

∠ACB = 2πOA-= 60π= π = 60∘
        CA    180  3

Итак, в треугольнике ABC  известны длины сторон AC =180,BC =160  и ∠C = π3  , а надо найти BH  . По теореме косинусов

AB =∘AC2-+-BC2-− 2-⋅AC-⋅BC-⋅cos∠C-= √32400+-25600-− 28800-=20√73.

По теореме синусов

                 √-
sin∠C-= sin∠B-;  ---3√---= sin∠B-;
 AB     AC     2⋅20  73    180

откуда

        9√3-           7
sin∠B = 2√73;  cos∠B = 2√73

Наконец, треугольник CBH  прямоугольный и

BH = BC ⋅cos∠B = 160⋅-√7--= 5√60
                   2  73    73
Ответ:

√560-
  73

Ошибка.
Попробуйте повторить позже

Задача 2#120578

Назовём экономичностъъ многогранника отношение его объёма к площади поверхности. Можно ли разрезать правильный тетраэдр экономичностью E  на 5  частей, сумма экономичностей которых равна 3E?

Источники: ФЕ - 2025, 11.4(см. www.formulo.org)

Подсказки к задаче

Подсказка 1

Хм.. сразу и не угадаешь, но понимаем что разрезание в таких задачах обычно симметрично, подумайте как можно этого добиться.

Подсказка 2

Представьте, что мы отрезаем от тетраэдра одинаковые маленькие тетраэдры. Как изменится объём и площадь поверхности у этих частей по сравнению с исходным телом?

Подсказка 3

Какая фигура останется в центре после отрезания 4 маленьких тетраэдров от вершин? Какие у неё свойства объёма и площади? Остаётся лишь сложить экономичности всех фигур. Что получится в сумме?

Показать ответ и решение

Отрежем от каждой вершины тетраэдра по маленькому тетраэдру с ребром вдвое меньшим, чем у исходного. У каждого маленького тетраэдра объём в 8 раз меньше, чем у исходного, а площадь поверхности — только в 4 раза, поэтому экономичность каждого из них равна E ∕2.  В середине останется октаэдр, у которого и объём, и площадь поверхности вдвое меньше, чем у исходного тетраэдра, поэтому его экономичность равна E.  Действительно, поверхность октаэдра состоит из 8 треугольников, а исходного тетраэдра — из 4⋅4= 16  таких же треугольников. А объём октаэдра равен V − 4⋅V∕8= V∕2,  где V  — объём тетраэдра.

Итого сумма экономичностей равна E+ 4⋅E∕2= 3E.

PIC

Ответ:

Да

Ошибка.
Попробуйте повторить позже

Задача 3#63948

На поверхности правильного тетраэдра ABCD  построена замкнутая линия, каждая точка X  которой обладает следующим свойством: длина кратчайшего пути по поверхности тетраэдра между X  и серединой ребра AB  равна длине кратчайшего пути по поверхности тетраэдра между X  и серединой ребра CD  . Найдите длину этой линии, если длина ребра тетраэдра равна 1.

Источники: Миссия выполнима - 2023, 11.4 (см. mission.fa.ru)

Подсказки к задаче

Подсказка 1

У нас тут рассматривается расстояние по поверхности...Как можно перевести картинку на плоскость в таком случае, чтобы было более удобно?

Подсказка 2

Рассмотреть развертку! Вот пусть мы развернули его так, что получился ромб ABCD, где AC - общее ребро у развернутых граней. Но все еще непонятно как работать с линиями ломаной, которые не получится нормально нарисовать на развертке. Что можно в таком случае придумать?

Подсказка 3

Давайте мысленно "порежем" нашу ломаную ребрами и отрезками AN, BN, CM, DM, где M и N - середины AB и CD, и рассмотрим только ту часть ломаной, что внутри треугольника AMC на нашей развертке. Наверное, в этом треугольнике не сложно найти такие точки на развертке?

Подсказка 4

Например, пусть P - точка ломаной внутри AMC. Понятно, что кратчайший путь от P до M - это PM, а кратчайший путь от P до N - это отрезок PN). Такие отрезки должны быть равны, а значит какое ГМТ у P?

Подсказка 5

Серединный перпендикуляр к MN! Достаточно легко теперь найти длину этой ломаной внутри AMC. А что делать с остальными частями этой ломаной? Вот что: попробуйте осознать, что они будут такими же, например, из соображений симметрии)

Показать ответ и решение

Пусть M  и N  — середины ребер AB  и CD  соответственно. Из соображений симметрии ясно, что ребрами AC,BC, BD,AD  и отрезками AN, BN,CM, DM  линия, о которой идет речь в условии задачи разбивается на 8 равных. Поэтому достаточно рассмотреть точки, принадлежащие треугольнику AMC  .

PIC

Пусть P  - одна из таких точек. Тогда кратчайшим путем между P  и M  служит отрезок PM  , а кратчайшим путем между P  и    N  - двухзвенная ломаная PKN  , вершина K  которой принадлежит ребру AC  (в случае P ∈AC  имеем просто отрезок PN)  . На развертке тетраэдра объединение граней ABC  и ADC  представляет собой ромб ABCD  , а ломаная PKN  - отрезок PN  в нем. Условие P M =P N  означает, что P  лежит на серединном перпендикуляре к отрезку MN  ; следовательно геометрическим местом точек P  служит отрезок QR  , где Q  - середина ребра AC  (и середина отрезка MN  ) R  - точка на отрезке MC  , ∠MQR  = 90∘ (см рисунок).

Найдем длину отрезка QR  . Легко видеть, что ∠QMR  = 30∘ , а отрезок QM  , будучи средней линией треугольника ABC  , имеет длину 1
2 . Поэтому QR = 1tg30∘ = √3
     2        6

Умножив это число на 8, получим ответ к задаче: 4√3-
 3

Ответ:

 4√3
 3

Ошибка.
Попробуйте повторить позже

Задача 4#67555

Дана треугольная пирамида SABC  , основание которой — равносторонний треугольник ABC  , а все плоские углы при вершине S  равны α  . При каком наименьшем α  можно утверждать, что эта пирамида правильная?

Источники: Тургор - 2023, 11.1 (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Эта задача на оценку + пример. Давайте попробуем сначала привести пример для угла, который, как нам кажется, подходит. А потом уже докажем, что для меньшего угла условие задачи не выполняется. Подумайте какой хороший угол нам подойдёт? Слова про правильные фигуры на это всячески намекают.

Подсказка 2

Верно, докажем, что при плоском угле 60 градусов наша пирамида окажется правильной. Нужно только понять, что если в треугольнике есть угол 60 градусов, то сторона напротив него средняя по величине между другими. Тогда предположив, что какое-то боковое ребро не равно ребру из основания, сможем получить противоречие и получить доказательство. Что же будет, если плоские углы будут меньше 60? Попробуйте построить пример неправильной пирамиды с таким углом, учитывая условия задачи и соотношения сторон по их размерам.

Подсказка 3

Давайте, рассмотрим равнобедренный треугольник SAB, в котором SA=SB и ∠S = α(α<60). Тогда сторона AB в нём наименьшая, и мы сможем его отложить на боковых сторонах. Осталось только понять, что отложив на рёбрах трёхгранного угла нужные отрезки(два из которых SA и SB) с плоскими углами меньше 60, мы получим неправильную пирамиду, то есть контрпример.

Показать ответ и решение

Докажем, что при α= 60∘ пирамида правильная. Пусть стороны треугольника ABC  равны 1.  Заметим, что в любом треугольнике с углом   ∘
60 против этого угла лежит средняя по длине сторона (причём если она строго меньше одной из сторон, то строго больше другой). Пусть одно из боковых рёбер пирамиды не равно 1 :  например, SA >1.  Тогда в гранях SAB  и SAC  рёбра SB  и SC  будут меньше 1,  и значит, в грани SBC  ребро BC  — не средняя сторона, противоречие.

Покажем теперь, как построить неправильную пирамиду с плоскими углами     ∘
α< 60 при вершине S.

PIC

Рассмотрим треугольник SAB  c SA = SB  и ∠S =α.  Так как AB < SB,  на стороне SA  существует такая точка C,  что BC = AB.  Теперь возьмем трёхгранный угол, у которого все плоские углы равны α,  и отложим на его ребрах отрезки SA,  SB,  SC.  Пирамида SABC  — искомая.

PIC

Ответ:

 60∘

Ошибка.
Попробуйте повторить позже

Задача 5#67674

Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?

Источники: ММО-2023, 11.5 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Попробуем разобраться в этом тетраэдре. Мы знаем, что середина каждой высоты лежит на вписанной сфере. Какое неравенство, связанное с высотой и радиусом вписанной сферы, мы можем получить?

Подсказка 2

Если Hi- длина произвольной высоты тетраэдра, то Hi/2<=2r, где r- радиус вписанной сферы. Это можно увидеть, если провести плоскость, параллельную плоскости основания высоты и касающуюся вписанной сферы. Что же может дать нам это неравенство? Полезно было бы вспомнить о том, что Hi и r связаны объёмом тетраэдра...

Подсказка 3

Обозначим за Si- площадь произвольной боковой грани. Тогда: 3*V=Hi*Si=r*(S1+S2+S3+S4), где V- объем тетраэдра. Попробуйте теперь воспользоваться неравенством Hi/2<=2r...

Подсказка 4

Подставив неравенство в равенство, мы получим, что: r*(S1+S2+S3+S4)<=4*r*Si. Сократим обе части на 4*r: (S1+S2+S3+S4)/4<=Si. Получается, что произвольно выбранная площадь не меньше среднего арифметического всех площадей. Это как-то странно...

Подсказка 5

Давайте предположим, что Si не больше всех оставшихся площадей. Тогда: Si=(Si+Si+Si+Si)/4<=(S1+S2+S3+S4)/4<=Si. Это означает, что все Si равны между собой. Тогда и все высоты равны между собой. Во что превращается неравенство Hi/2<=2r?

Подсказка 6

Положим, что S1=S2=S3=S4=S, а H1=H2=H3=H4=H. Т.к. H*S=r*(S1+S2+S3+S4) получаем, что H=4r. Но тогда высоты обязаны содержать центр вписанной окружности и точку касания с гранью. Может как-то выразить длины ребер через высоты...

Подсказка 7

Для определенности проведем высоту AH и будем искать ребро AB. По теореме о касательной и секущей получаю, что BH^2=H*H/2. Теперь осталось воспользоваться теоремой Пифагора для треугольника ABH и увидеть, как AB выражается через H.

Показать ответ и решение

PIC

Рассмотрим тетраэдр ABCD,  удовлетворяющий условию задачи. Заметим, что по условию для любой высоты hi  данного тетраэдра справедливо неравенство hi2-≤2r,  где r  — радиус вписанной сферы, то есть hi ≤ 4r,i=1,2,3,4.

Пусть Si  — площадь грани, на которую опущена высота hi.  Докажем, что S1 = S2 =  =S3 =S4.  Предположим противное. Выберем грань минимальной площади (если таких граней несколько, то берём любую из них). Без нарушения общности можно считать, что её площадь равна S1  (иначе можно ввести переобозначения). Так как не все Si  равны между собой и S1  - наименьшая из них, то

S1+-S2+S3-+S4->S1
      4

Выразим объём тетраэдра двумя способами:

V = 1h S = 1r(S + S + S +S )> 1r⋅4S
    3 1 1  3  1   2   3  4   3    1

Отсюда h1 > 4r,  что противоречит неравенству h1 ≤4r

Итак, все Si  равны, поэтому все hi  равны, так как     3V
hi = Si .  Обозначим за h  длину этих равных высот. Из приведённого выше соотношения для объёма получаем h= 4r,  то есть неравенство обращается в равенство. Но это возможно только в случае, если высота содержит центр сферы и точку касания с гранью (и так для каждой высоты).

Пусть H  - основание высоты тетраэдра, опущенной из точки A.  Тогда H  совпадает с точкой касания сферы и грани BCD  Пусть BH = a,  тогда по теореме о касательной и секущей  2  h
a = 2 ⋅h.  По теореме Пифагора из прямоугольного треугольника ABH  получаем

                            h2  3h2
AB2 =AH2 + BH2 =h2 +a2 = h2+ 2-=-2-

Аналогично получаем такое же выражение для остальных рёбер тетраэдра, следовательно, они равны между собой, то есть тетраэдр правильный.

Ответ: верно

Ошибка.
Попробуйте повторить позже

Задача 6#70779

Дана пирамида PQRS,  вершина P  которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ.  Известно, что QR = 2,  QS = 1,      √-
PS = 2.  Найдите длину ребра RS.  Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Источники: Физтех-2022, 11.7 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, на что нам могут намекать середины сторон? На средние линии. А средние линии параллельны основаниям. Что мы можем из этого извлечь? Какие параллелограммы есть на картинке?

Подсказка 2

Во-первых, в силу свойства средней линии, ADCE и ABDP - параллелограммы. При этом они вписаны в сечения нашей сферой плоскостей ACD и PRS. А значит, эти параллелограммы - прямоугольники. А это дает много прямых углов, а значит - много перпендикулярностей. Какая прямая тогда перпендикулярна прямой RS? А что нам это дает?

Подсказка 3

Прямая PQ перпендикулярна прямой RS, из за того, что параллельные им прямые EA и AD перпендикулярны. Давайте опустим перпендикуляр QH на RS.

Подсказки 4

Тогда у нас плоскость QHP перпендикулярна RS. Значит, и прямая PH перпендикулярна RS. А значит, наш «согнутый» четырехугольник QRPS (то есть, мы можем повернуть треугольник QRS вокруг RS до момента, когда повернутый треугольник будет лежать в плоскости RPS) имеет взаимноперпендикулярные диагонали. А значит, две суммы квадратов противоположных сторон равны. А тогда мы нашли RP. А значит, у нас фиксированы две стороны прямоугольного треугольника RPS, и мы найдем его гипотенузу.

Подсказка 5

Остается дать оценку на радиус сферы, описанной вокруг тетраэдра. Ну какую самую глупую оценку можно дать? Что первое приходит в голову(с учетом того, что нам еще пример надо построить)?

Подсказка 6

Самая глупая оценка снизу - это то, что радиус не меньше радиуса описанной окружности треугольника QRS. Найти радиус нетрудно(мы знаем все три стороны). Остается привести пример.

Подсказка 7

Чтобы достигалось равенство, надо, чтобы у нас в плоскости QRS лежал содержался центр сферы. Впишем туда треугольник QRS.

Подсказка 8

Остается доказать, что на сфере найдется точка P’, такая, что треугольники PRS и P’RS равны(это по сути и значит, что получен тетраэдр, который подходит под условия). То есть по сути надо поворачивать треугольник P’RS, равный треугольнику PRS, вокруг RS, до того момента, как точка P’ не станет принадлежать окружности.

Показать ответ и решение

Пусть A,B,C,D,E  - середины рёбер PR,RS,QS,PS,QR  соответственно. Из теоремы о средней линии треугольника следует, что ADCE  и ABDP  - параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD  и PRS  , поэтому эти параллелограммы - прямоугольники. Угол RP S  — прямой; прямые PQ  и RS  перпендикулярны, так как P Q∥AE, AE ⊥CE, CE ∥RS.

Отметим в плоскости PRS  точку  ′
Q такую, что           ′
△QRS = △Q RS,  а точки P  и  ′
Q лежат по разные стороны от прямой RS  (треугольник  ′
QRS  может быть получен из треугольника QRS  поворотом вокруг прямой RS).

PIC

Из равенства треугольников QRS  и Q′RS  следует, что основания их высот, опущенных на RS  — это одна и та же точка (назовём её H ).  Плоскость HQQ ′ перпендикулярна RS  (так как QH ⊥ RS,Q′H ⊥ RS),  поэтому QQ′ ⊥ RS.  Поскольку QQ ′ ⊥ RS  и PQ ⊥ RS,  то плоскость P QQ′ перпендикулярна RS  и PQ ′ ⊥RS.

Значит, диагонали четырёхугольника PRQ ′S  пересекаются под прямым углом (в точке H  ). По теореме Пифагора

PR2 =P H2+ RH2,Q′R2 = Q′H2+ RH2,

Q′S2 =Q ′H2 +SH2,P S2 = PH2+ SH2

Следовательно,

P S2+ Q′R2 = PR2+ Q′S2

     ∘-------------
PR =  22+ (√2)2− 12 = √5

Из прямоугольного треугольника PRS  находим

     ∘---2----2  √-
RS =  PR  +P S =  7

Радиус сферы, описанной около пирамиды PQRS  , не меньше радиуса r  окружности, описанной около грани QRS  . Пирамида, для которой достигается равенство, существует. Докажем это.

PIC

Рассмотрим сферу радиуса r  и окружность - её сечение, проходящее через центр сферы. В сечении сферы указанной плоскостью получится окружность с диаметром RS  , в которую можно вписать прямоугольный треугольник PRS  . По теореме косинусов из треугольника PRS  находим, что

          QR2+ QS2− RS2   4+1 − 7   1
cos∠RQS  = --2⋅QR-⋅QS----= 2-⋅2-⋅1--=− 2

∠RQS  =120∘

По теореме синусов

      RS      √7-
r = 2sin∠RQS-= √3-
Ответ:

 RS = √7,R  =∘ 7-
         min    3

Ошибка.
Попробуйте повторить позже

Задача 7#72972

Звездолёт находится в полупространстве на расстоянии a  от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной не более 14a?

Источники: ММО-2022, 11.4 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

В условии сказано, что пройдя расстояние, равное a, в определенную сторону, звездолет покинет полупространство. Каким образом мы можем описать все варианты той точки, где кончается полупространство?

Подсказка 2

Мы можем сказать, что если звездолет находится в какой-нибудь точке О, то на сфере с центром в точке O и радиусом a гарантированно найдется точка , которая уже не будет являться частью полупространства. Подумайте, как данная сфера может помочь в выборе траектории. Может быть, есть какая-то фигура, которую удобно будет описать около сферы?

Подсказка 3

Рассмотрите правильный октаэдр, описанный около данной сферы. Если мы докажем, что путь из центра октаэдра по всем вершинам без повторений меньше 14a и хотя бы одна вершина гарантировано не лежит в полупространстве, то мы решим задачу. Сначала подумайте, как можно сделать второе.

Подсказка 4

Воспользуемся методом от противного. Подумайте, где возникает противоречие, если мы скажем, что все вершины октаэдра лежат в данном полупространстве.

Подсказка 5

Теперь нужно найти длину пути от О и по всем вершинам. Давайте назовем наш октаэдр A₁A₂A₃A₄A₅A₆, тогда не трудно найти кратчайший маршрут обхода: O -> A₁ -> A₂ -> A₃ -> A₄ -> A₅ -> A₆. Как можно найти длину данного пути?

Подсказка 6

Для начала нужно найти длину отрезка OA₁, так как из него легко можно выразить длину ребра октаэдра. Мы знаем, что длина высоты, опущенной из точки О на грань октаэдра равна a, Тогда как мы можем найти длину OA₁?

Подсказка 7

Давайте рассмотрим пирамиду OA₁A₂A₃, найдем ее объем двумя разными способами, как 1/6 куба с ребром OA₁ и через длину высоты и площадь A₁A₂A₃. Из равенства двух данных выражений легко можно выразить OA₁. Для окончательного решения останется только найти длину ребра и доказать, что предложенный нами маршрут меньше 14a.

Показать ответ и решение

PIC

Пусть корабль находится в некоторой точке O.  Рассмотрим правильный октаэдр A1A2A3A4A5A6,  описанный возле шара радиуса a  с центром в точке O.  Докажем, что путь O → A1 → A2 → A3 → A4 → A5 → A6  заведомо позволит достигнуть граничной плоскости.

Предположим противное. Тогда вершины октаэдра, а значит, и сам октаэдр (выпуклая оболочка его вершин) лежат строго внутри полупространства. Поэтому вписанный шар октаэдра, радиус которого равен a,  тоже лежит строго внутри полупространства. Получаем противоречие, так как по условию расстояние до граничной плоскости полупространства равно a.

Покажем теперь, что длина пути O→ A1 → A2 → A3 → A4 → → A5 → A6  меньше 14a.  Пусть OA1 =OA2 = OA3 = x,OH  — высота пирамиды OA1A2A3.  Запишем ее объём двумя способами:

                                 √-
V = 1x3 = 1⋅OH ⋅S     = 1⋅a⋅√3 ⋅ (x-2)2
    6    3      A1A2A3  3         4

Отсюда получаем, что     √-
x= a 3,  а длина ребра октаэдра равна  √-
a 6.  Поэтому длина пути равна √ -  √-
( 3+5 6)a< 14a,  так как √ -
  2< 43∕30.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 8#91401

Можно ли в единичный куб поместить правильный шестиугольник со стороной, равной 2
3  ?

Показать ответ и решение

Рассмотрим куб ABCDA  B C D
      1 1 1 1  и его сечение плоскостью, проходящей через середины рёбер AB,BC  и CC
   1

PIC

В сечении получится шестиугольник EFGHIJ.  Покажем, что он правильный. Действительно, каждая его сторона равны половине диагонали грани, то есть равна √-
22  . Из равенства треугольников JEF  и EFG  (по трём сторонам) следует равенство углов ∠JEF = ∠EFG.  Аналогично показывается равенство всех других внутренних углов шестиугольника. Так как √ -
-22> 23  , внутрь шестиугольника EF GHIJ  (а, значит, и внутрь куба) помещается правильный шестиугольник со стороной 23 .

Примечание: Правильность шестиугольника EF GHIJ  можно было также доказать, используя тот факт, что он переходит в себя при поворотах на 120∘ и на 180∘ относительно диагонали куба B1D.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 9#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Источники: Физтех - 2021, 11.2 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем, а как использовать равные отрезки? В каких треугольниках они состоят, что можно отметить в таких фигурах?

Подсказка 2

Отметим E — середину AB в равнобедренных треугольниках ADB и ACB! Какие тогда выводы можно сделать об AB?

Подсказка 3

AB — хорда окружности, перпендикулярной оси цилиндра. Давайте теперь подумаем, а в каких случаях мы смогли бы уменьшить радиус цилиндра?…

Подсказка 4

Мы можем уменьшать радиус цилиндра, если AB не является диаметром указанной окружности. Какие тогда выводы можно сделать из условия на минимальность радиуса цилиндра?

Подсказка 5

Мы должны рассматривать такие тетраэдры, в которых AB является диаметром цилиндра! Давайте теперь попробуем воспользоваться тем, что CD перпендикулярен основанию цилиндра. Что полезного можно отметить?

Подсказка 6

Отметим H — проекцию точек C и D на основание цилиндра! Осталось лишь воспользоваться тем, AB — диаметр, и немного посчитать ;)

Показать ответ и решение

Пусть E  — середина AB.CE  и DE  — медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  .

PIC

Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью — окружность, а AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB− диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB =1  . Действительно, из треугольников ACE  и ADE  следует, что

CE = ∘52-− 12 = 2√6,DE = ∘62−-12 = √35

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =       √-
BH =  2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =           --              --
√25− 2-=√ 23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 10#92163

Многогранник с вершинами в серединах рёбер некоторого куба называется кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?

Источники: ММО - 2021, первый день, 11.5 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Для начала мы хотим получить какой-то симметричный большой пример, и скорее всего наилучший пример и будет симметричным, поскольку вся картинка симметрична. В таком случае давайте подумаем, для какой плоскости нам было бы удобно считать длины всех сторон, да так, чтобы плоскость ещё как-то относительно симметрично располагалась, так как нам не хочется считать много сторон и решать большую систему уравнений (нужно будет так чутка подвигать плоскость, скорее всего, чтобы многоугольник был равносторонним, вряд ли мы сразу найдём идеальный пример). Какую тогда плоскость удобно было бы взять, в связи с рассуждениями выше?

Подсказка 2

Мы можем взять плоскость, которая параллельна одной их плоскостей куба, так как в сечении получается симметричный 8-угольник, у которого есть две четвёрки, в каждой из которых стороны попарно равны. При этом, когда у нас плоскость расположена на маленькой высоте, то стороны, не лежащие в плоскостях куба, очень большие, а когда поднимаем выше, уменьшаются. Во-первых, поймите до какого уровня мы можем поднимать, чтобы не начать дублировать случаи, а во-вторых, как нам сделать равными все стороны? От какого параметра зависят эти стороны?

Подсказка 3

Само собой, эти стороны зависят только от высоты, а значит, несколькими теоремами Пифагора мы можем понять, чему должна быть равна высота, чтобы получался равносторонний восьмиугольник. Большой пример есть. Теперь можно попробовать покрутить плоскость, попробовать придумать что-то более большое. А если не получится, то предполагать, что n > 8 и приходить к противоречию. А в чем может вообще заключаться противоречие? Если у нас есть некоторый n-угольник, который высекается плоскостью из кубооктаэдра, то если мы хотим прийти к противоречию с n, то нам было бы удобно подумать, где могут лежать его точки, потому что если мы найдём плоскость, в которой лежит много вершин нашего n-угольника, то скорее всего придём к противоречию.

Подсказка 4

Найти что-то большее не вышло, поэтому идём по пути, который был описан выше. Если есть сечение кубооктаэдра плоскостью, то вершины данного n-угольника лежат на рёбрах кубооктаэдра, при этом, на одном ребре не более двух точек. Если у нас есть > 8 точек, то нам было бы удобно найти 4 плоскости, которые содержат рёбра кубооктаэдра, ведь тогда по рассуждениям из предыдущей подсказки задача была бы решена. Посмотрите на картинку и поймите, какие 4 плоскости в объединении содержат все рёбра кубооктаэдра, если у нас его вершины идут по серединам сторон куба, а значит есть много паралельностей, а потому много рёбер, лежащих в одной плоскости.

Показать ответ и решение

Пусть ребро исходного куба, из которого получился кубооктаэдр, равно 1. Рассмотрим сечения кубооктаэдра плоскостью, параллельной основанию куба, на расстоянии        1
0 <h < 2  от основания. В сечении будут получаться восьмиугольники, все углы которых равны    ∘
135 . Для доказательства этого факта достаточно рассмотреть точки пересечения плоскости сечения с ребрами куба:

PIC

Найдем значение h  , при котором соседние стороны получающегося в сечении восьмиугольника равны, тогда он окажется правильным. Длина x  стороны, которая лежит в грани куба, находится из пропорции x1 = 1h∕2-=2h  . Другая сторона — это гипотенуза прямоугольного равнобедренного треугольника, длина которой равна √2 − h√2
 2  . Поэтому достаточно потребовать, чтобы выполнялось равенство 2h= √2-− h√2
     2  , то есть h = --1√--< 1
    2(1+ 2)  2  . Итак, правильный восьмиугольник в сечении получиться может.

Предположим, что в сечении кубооктаэдра некоторой плоскостью α  получился правильный n  -угольник и n> 8  . Тогда вершины этого n  -угольника должны лежать на ребрах кубооктаэдра, причем одному ребру не может принадлежать более двух вершин n  -угольника. Рассмотрим сечение исходного куба, которое является правильным шестиугольником (на рисунке ниже закрашено серым), а также сечения, которые получаются из данного поворотом на   ∘   ∘
90,180 и    ∘
270 относительно вертикальной оси куба:

PIC

Заметим, что объединение сторон этих четырех правильных шестиугольников есть объединение всех ребер кубооктаэдра. Покажем, что на сторонах какого-то из четырех выбранных правильных шестиугольников лежит хотя бы 3 вершины n  -угольника. Действительно, если на сторонах каждого такого шестиугольника лежит не более двух вершин, то всего вершин будет не более восьми. Следовательно, плоскость сечения n  -угольника совпадает с плоскостью этого шестиугольника и в сечении кубооктаҝдра получается шестиугольник. Получаем противоречие.

Ответ: 8

Ошибка.
Попробуйте повторить позже

Задача 11#105348

Рассматриваются четырёхугольные пирамиды MABCD  со следующими свойствами: основание пирамиды — выпуклый четырёхугольник ABCD,  в котором AB = BC = 1,  CD =DA = 2,  а каждая из плоскостей боковых граней MAB,  MBC,  MCD,  MDA  составляет угол   ∘
45 с плоскостью основания.

а) Найдите объём такой пирамиды, если её высота, опущенная из вершины M,  равна 9
5.

б) При какой длине высоты объём рассматриваемых пирамид максимален и чему равен этот объём?

Подсказки к задаче

Подсказка 1

Рассмотрите высоту пирамиды.

Подсказка 2

Высота ведь даёт нам угол 90°. Попробуйте перейти в прямоугольный треугольник.

Подсказка 3

Пусть H — проекция точки M на ABCD (следовательно, MH - высота), P — проекция точки M на AB. Чему будет равен ∠MPH?

Подсказка 4

По условию, каждая грань образует с основанием угол 45°, следовательно, ∠MPH = 45°. Значит, PH = HM. Выполните аналогичные действия для остальных граней.

Подсказка 5

У нас получатся равные прямоугольные треугольники, что можно тогда сказать о точке H?

Подсказка 6

Она будет центром вписанной в ABCD окружности с радиусом, равным MH. Что мы еще знаем про основание?

Подсказка 7

Проведя диагональ, можно получить 2 равных треугольника. Чему будет равна площадь этих треугольников?

Подсказка 8

S(ABD) = S(BCD) = AB ⋅ AD ⋅ sin(∠BAD) / 2. В пункте б мы хотим максимизировать объем пирамиды. Какой тогда может быть S(ABCD)?

Подсказка 9

S(ABCD) ≤ 2. На каких прямых лежит точка H?

Подсказка 10

Проведите биссектрисы внешних и внутренних углов четырехугольника ABCD. Что еще может быть на картинке?

Подсказка 11

Рассмотрите вневписанную окружность.

Подсказка 12

Выразите площадь ABCD через радиус вписанной окружности.

Подсказка 13

Подумайте, в каких случаях пирамида будет удовлетворять условию задачи.

Подсказка 14

Через какие точки должна проходить высота?

Показать ответ и решение

PIC

Пусть MH  — высота пирамиды, (MH  = h),  P  — проекция M  на прямую AB  . Тогда MHP  — прямоугольный треугольник с углом ∠MP H = 45∘ , откуда HP = h⋅ctg45∘ = h  . Аналогично доказывается, что точка H  удалена от каждой из прямых BC, CD,DA  на расстояние r= h  (иначе говоря, окружность радиуса r  с центром H  касается прямых AB,BC, CD,DA )  .

Треугольники BAD  и BCD  равны по трем сторонам, поэтому четырёхугольник ABCD  симметричен относительно диагонали BD  . Его площадь S  равна 2SBAD = AB ⋅AD sin∠BAD  , поэтому S ≤ AB ⋅AD = 2  . Равенство достигается, когда ∠BAD  = 90∘ , поэтому Smax = 2  .

Точка H  лежит на внутренней или внешней биссектрисе каждого из углов четырехугольника ABCD.BD  является внутренней биссектрисой углов B  и D  . Внешние биссектрисы углов B  и D  параллельны, поэтому H  обязана лежать на BD  .

PIC

Обозначим через I  и J  точки пересечения внутренней и внешней биссектрис угла A  с прямой BD  . Тогда I  — центр вписанной окружности четырёхугольника ABCD  (пусть ее радиус равен r1  ); J  центр окружности, касающейся продолжений сторон четырехугольника ABCD  (вневписанной окружности, пусть ее радиус равен r2  ). Площадь четырёхугольника, в который вписана окружность может быть задана формулой

    (AB + BC +CD + DA )⋅r
S = ---------2---------1,

откуда r1 = S3  . Также

S = SADJ +SCDJ − SABJ − SBCJ = (AD-+CD-−-AB-− BC-)⋅r2,
                                      2

откуда r2 = S  .

Пирамида удовлетворяет условию задачи тогда и только тогда, когда (1) высота проходит через центр вписанной в основание окружности (т.е. H = I  ) и при этом её длина равна h= r1 = S
       3  или (2) высота проходит через центр вневписанной окружности (т.е. H = J  ) и h= r2 = S  .

a) При h= 9
   5  первый случай невозможен ( S = 3r1 = 3h = 27-> 2
            5  ). Поэтому остаётся второй случай, и тогда S = r2 = h= 9
          5  . Объём равен V = Sh= 27
    3   25  .

б) Объём в первом и во втором случае равен

          2
V1 = Sh-= S
     3   9

V2 = Sh-= S2
     3   3

Наибольший объём

      S2max  4
Vmax = 3  = 3
Ответ:

а) 27
25

б) 4
3

Ошибка.
Попробуйте повторить позже

Задача 12#51634

Боковые рёбра SA,  SB  и SC  треугольной пирамиды SABC  взаимно перпендикулярны. Точка D  лежит на основании пирамиды ABC  на расстоянии √-
 5  от ребра SA,  на расстоянии √--
 13  от ребра SB  и на расстоянии √--
 10  от ребра SC.  Какое наименьшее значение может иметь объём пирамиды SABC  при этих условиях?

Источники: ПВГ-2015 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Сначала надо поработать с расстояниями от D до ребер, которые даны по условию. Удобнее всего будет работать через расстояния от D до боковых плоскостей, их можно вычислить.

Подсказка 2

В этой задаче нельзя не ввести координаты. Пусть основанием будет точка S. Угадайте, какие прямые будут осями?

Подсказка 3

Чтобы оценить объём, в данном случае нужно оценить произведение боковых рёбер. Чтобы получить про них какую-то информацию, поработайте с уравнением плоскости основания. На ней лежат целых четыре точки с красивыми координатами.

Показать ответ и решение

Опустим перпендикуляры DD  ,DD  ,DD
   1   2   3  из точки D  на плоскости SBC  SAC  и SAB  соответственно. Обозначим DD  = x.
   1  DD2 = y,  DD3 =z.  Согласно условию составим систему уравнений

(  2   2
|{  y2 +z2= 5
|(  x2 +z2= 13
   x +y = 10

Отсюда находим x= 3,  y = 1,  z = 2.  Обозначим длины рёбер SA,  SB  и SC  через a,b  и c  соответственно.

PIC

Лемма: 3  1  2
a + b + c = 1.

Доказательство: Введём систему координат с началом в точке S  как на рисунке. Запишем уравнение плоскости ABC.

A1x+ B1y+ C1z+ D= 0

Так как плоскость не проходит через начало координат, то D ⁄= 0.  Значит, можно поделить на − D.  Получим:

Ax+ By+ Cz =1

Теперь поставим в уравнение плоскости точки, в ней лежащие, чтобы найти коэффициенты A,  B,  C.  Итого получим, что A = 1,
    a  B = 1,
    b  C = 1.
    c  А значит уравнение плоскости

x + y+ z= 1
a   b  c

Подставив туда координаты принадлежащей этой плоскости точки D,  получим 3a + 1b + 2c =1.  Лемма доказана.

Из неравенства между средним арифметическим и средним геометрическим для трёх переменных получаем:

          ------    ---
 3a+1b+2c-≥ 3∘ 3⋅ 1⋅ 2 = 3∘-6-⇐⇒ abc≥ 6⋅27
⇐ ⇒31= (3+ a1+b2c)3 ≥ 6a⋅2b7c⇐⇒ abc≥ 6⋅27
        a  b  c    abc

причём равенство имеет место при 3 = 1 = 2= 1.
a   b  c  3  Объём пирамиды V = abc,
    6  поэтому V ≥27.  Равенство имеет место при a= 9,  b= 3,  c= 6.

Ответ:

 27

Ошибка.
Попробуйте повторить позже

Задача 13#63893

Отрезок AB = 8  пересекает плоскость α  под углом 30∘ и делится этой плоскостью в отношении 1:3  . Найдите радиус сферы, проходящей через точки A  и B  и пересекающей плоскость α  по окружности наименьшего радиуса.

Источники: Ломоносов-2015, 11.5 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Постройте диаметр получившейся окружности через точку С.

Подсказка 2

Найдите пересекающиеся хорды.

Подсказка 3

Хотелось бы оценить диаметр (следовательно, и радиус) получившейся окружности. Как это можно сделать?

Подсказка 4

Примените неравенство о средних.

Показать ответ и решение

Обозначив точку пересечения AB  с плоскостью α  через C  , получим AC =2,BC = 6  . В пересечении сферы с плоскостью получается некоторая окружность. Проведём через C  диаметр MN  этой окружности.

PIC

Тогда AB  и MN  — хорды сферы, и по свойству пересекающихся хорд: MC ⋅CN = AC ⋅CB = 12  . Так как                  -------     -
MN  = MC + CN ≥2√MC  ⋅CN =4√ 3  , то минимальный радиус окружности больше или равен   -
2√3  и значение    -
2√ 3  достигается при MC  =CN  =2√3  , то есть C− центр этой окружности. Так как ∠COP = 90∘− ∠OCP = ∠NCP = 30∘ , то OC =2⋅CP.  При этом CP = AB2-− AC = 2.  Значит, R2 =OM2  =MC2 + OC2 = 12 +42 = 28.

Ответ:

 2√7

Ошибка.
Попробуйте повторить позже

Задача 14#63897

В треугольной пирамиде SABC  рёбра SA,SB,SC  не длиннее, чем 3,4  и 5,  соответственно, а площади граней SAB,SAC,SBC  не меньше, чем 6,15∕2  и 10,  соответственно. Найдите объём пирамиды SABC.

Источники: ПВГ-2014, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Какой самый доступный способ отыскать площадь треугольника-грани, когда известны две его стороны? Сразу же напрашивается формула S = 0.5 * a * b * sin(γ). Оценим тогда площадь грани SAB: они никак не больше чем полупроизведение SA * SB * sin(∠ASB), причём синус также может принимать далеко не бесконечно большие значения.

Подсказка 2

Если всё сделано верно, то мы обнаружим, что верхняя и нижняя границы для площади грани SAB совпадают. А значит...?

Подсказка 3

Итак, теперь мы знаем SA, SB и ∠SAB. Проделайте аналогичную процедуру с другими бок. гранями, чтобы найти ещё рёбро и уголочки. Тогда мы узнаем и высоту пирамиды. Осталось подставить всё это в формулу объёма и радоваться результату!

Показать ответ и решение

PIC

Площадь боковой грани SAB  не меньше 6,  поэтому

6 ≤ 1⋅SA⋅SB ⋅sin∠ASB ≤ 1⋅3⋅4⋅1= 6.
    2                 2

Следовательно, SA= 3,SB = 4,sin∠ASB = 1  , т.е. SA  перпендикулярно SB  . Аналогично получаем, что SC =5  и SC  перпендикулярно SA  и SB  . Поэтому объём пирамиды равен 1∕6⋅3⋅4⋅5= 10.

Ответ:

 10

Ошибка.
Попробуйте повторить позже

Задача 15#64568

В прямоугольном параллелепипеде ABCDA  B C D
      1 1 1 1  с рёбрами AB =3,AD = 4  и AA = 5
  1  проведены два сечения – плоскостью, проходящей через диагональ A1C  , и плоскостью, проходящей через диагональ B1D  . Найдите наибольшее возможное значение суммы площадей поверхностей многогранников, на которые эти сечения разбивают данный параллелепипед.

Источники: ОММО-2014, номер 10, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Нарисуйте картинку и попробуйте понять: что точно, вне зависимости от положения сечений будет содержаться в искомой сумме? Можем ли мы как-то избежать попадания в эту сумму какой-то части исходного параллелепипеда? А сколько раз туда попадут части наших сечений?

Подсказка 2

Итак, получается, что как бы ни были расположены сечения, их площади дважды войдут в искомые площади поверхностей. Значит надо эти площади максимизировать!

Подсказка 3

Какой фигурой будет являться каждое сечение? Как площади сечений связаны с длинами диагоналей? Исследуйте, где должны быть расположены вершины параллелограмма-сечения, чтобы расстояние до диагонали параллелепипеда было наибольшим.

Подсказка 4

Осталось лишь посчитать все нужные длины, призвав на помощь теорему Пифагора. Будьте внимательны к арифметике и задача окажется убита!

Показать ответ и решение

Сумма площадей поверхностей многогранников, на которые разбивается параллелепипед сечениями, равна сумме площади поверхности параллелепипеда и площадей внутренних поверхностей. Сумма площадей внутренних поверхностей равна удвоенной сумме площадей сечений.

Найдем наибольшую возможную площадь сечения, проходящего через диагональ XY  произвольного параллелепипеда с ребрами a≤ b≤ c  . Сечением является параллелограмм ZXT Y  , вершины которого лежат на противоположных рёбрах параллелепипеда. Площадь параллелограмма равна произведению длины диагонали XY  на расстояние от точки Z  до XY  .

PIC

Рассмотрим проекцию параллелепипеда на плоскость, перпендикулярную диагонали XY  . На рисунке видно, что расстояние от точки Z  ломаной ABC  до точки Y  , то есть до диагонали XY  , наибольшее, если Z  совпадает с одной из вершин A,B  или C  .

PIC

Значит, сечение проходит через одно из ребер параллелепипеда. Таким образом, наибольшую площадь имеет одно из диагональных сечений. Все эти сечения являются прямоугольниками. Найдем наибольшую из их площадей

     ∘-----      ∘------      ∘ ------
S1 = a b2+ c2,S2 = b a2+ c2 и S3 =c b2+ a2.

Из условия a ≤b ≤c  следует, что,  22   22   2 2  2 2
a b +a c ≤c b +a c  , и  22   22   22   22
a b+ c b ≤c b+ a c  . Поэтому S1 ≤ S3  и S2 ≤ S3  . Значит, наибольшую площадь имеет сечение, проходящее через наибольшее ребро. По условию наибольшую длину имеет ребро AA1  , значит, наибольшую площадь  √-2---2
5 4 + 3 = 25  имеют сечения AA1C1C  и BB1D1D  .

PIC

Сумма площадей поверхностей многогранников, на которые разбивается параллелепипед этими сечениями (см. рисунок), равна

2(AA1⋅AB + AA1⋅AD +AB ⋅AD )+4 ⋅25= 194.
Ответ: 194

Ошибка.
Попробуйте повторить позже

Задача 16#91918

Основанием пирамиды служит треугольник со сторонами 5, 12 и 13, а её высота образует с высотами боковых граней (опущенными из той же вершины) одинаковые углы, не меньшие  ∘
30.  Какой наибольший объём может иметь такая пирамида?

Подсказки к задаче

Подсказка 1

Нарисуйте картинку из условия и примените теорему о трёх перпендикулярах.

Подсказка 2

Найдите равные треугольники.

Подсказка 3

Что можно сказать о точке О, являющейся основанием высоты пирамиды?

Подсказка 4

Она равноудалена от прямых, на которых лежат стороны треугольника, являющегося основанием. Чем она тогда может являться?

Подсказка 5

Точка О является центром вписанной/вневписанной окружности данного треугольника.

Подсказка 6

Заметьте, что данный треугольник является прямоугольным. Выразите радиусы вписанной и вневписанных окружностей.

Подсказка 7

Воспользуйтесь ограничением на угол, чтобы оценить тригонометрическую функцию.

Показать ответ и решение

Пусть A
 1  , B
 1  и C
 1  — основания перпендикуляров, опущенных из основания O  высоты DO  пирамиды ABCD  на стороны соответственно BC  , AC  и AB  основания △ABC  , причём BC =12  , AC = 5  , AB =13  .

PIC

По теореме о трёх перпендикулярах DB1 ⊥AC  , DC1 ⊥ AB  и DA1 ⊥ BC  . Значит, DB1  , DC1  и DA1  — высоты боковых граней пирамиды. По условию задачи ∠ODB1  = ∠ODC1  = ∠ODA1  . Прямоугольные треугольники ODB1  , ODC1  и ODA1  равны по катету и прилежащему острому углу, значит, OB1 =OC1 = OA1  , то есть точка O  равноудалена от прямых, на которых лежат стороны треугольника ABC  . Следовательно, O  – либо центр вписанной окружности этого треугольника, либо центр его вневписанной окружности. Обозначим ∠ODB1 = ∠ODC1 = ∠ODA1 = α≥ 30∘ . Заметим, что треугольник ABC  —прямоугольный ( AC2 +BC2 = 25+ 144= 169= 132 =AB2  ), причём ∠ACB  =90∘ . Пусть r  — радиус его вписанной окружности, а ra  , rb  и rc  — радиусы вневписанных окружностей, касающихся сторон BC  , AC  и AB  соответственно, S  – площадь треугольника ABC  , p  – его полупериметр. Тогда

S = 1AC ⋅BC = 30
    2

   1                     S-
p= 2(AB +BC + AC)= 15,r= p = 2

      S             S            S
ra = p-− BC-= 10,rb = p−-AC-= 3,rc = p−-BA-= 15

Если h  , ha  , hb  и hc  — высоты пирамиды соответствующей каждому из рассмотренных случаев, то

h= rctgα,ha = ractgα,hb = rbctgα,hc = rcctgα.

Поскольку в каждом из этих случаев площадь основания пирамиды одна и та же, объём пирамиды максимален, если максимальна её высота. В свою очередь, максимальная высота соответствует максимальному из найденных четырёх радиусов, то есть rc = 15  . Поэтому

VABCD = 1S△ABC ⋅DO = 1S ⋅hc =150ctgα
        3            3

Но так как α ≥30∘ ,       √-
ctgα≤  3  , откуда           √-
VABCD ≤150 3  , причем равенство достигается только если радиус равен rc  , и α =30∘ .

Ответ:

 150√3

Рулетка
Вы можете получить скидку в рулетке!