Тождественные преобразования на Всесибе
Ошибка.
Попробуйте повторить позже
Пусть длины сторон треугольника являются натуральными числами , и одна из его высот равна сумме двух других. Доказать, что
число
является точным квадратом (натурального числа).
Источники:
Пусть — площадь треугольника, а
— высоты к сторонам
соответственно.
Из формулы площади треугольника имеем, что
Без ограничения общности будем считать, что . Тогда
Откуда . Но тогда
и можно сказать, что
Ошибка.
Попробуйте повторить позже
Найдите все действительные числа для которых существуют три различных действительных числа
таких что
Источники:
Первое решение.
Из условия получаем
Аналогично (в силу цикличности равенств)
После перемножения полученных трёх равенств имеем
С учётом того, что числа различные, получаем после сокращения на
Из условия получаем
Аналогично (в силу цикличности равенств)
После перемножения полученных трёх равенств имеем
Этому равенству не могут удовлетворять значения отличные от
поэтому других решений у задачи быть не может. Осталось
проверить, подходят ли
При существует удовлетворяющая условиям задачи тройка
а при
можно взять
Поэтому оба
найденных значения параметра идут в ответ.
Второе решение.
Сначала постараемся избавиться от трёх неизвестных в одном выражении:
Наконец:
Получаем:
Тогда либо либо
Последнее невозможно, ведь по условию
и получаем
— противоречие с
условием.
Осталось проверить
Зафиксируем тогда из ранее полученного
Все три условия выполнены и можно предъявить конкретную тройку но нами получен общий вид
в
зависимости от
при учёте
Осталось проверить, что в тройке нет совпадающих чисел различность.
Допустим, что Тогда
То есть такого быть не может. Остальные два равенства и
проверяются (что они невозможны) аналогично.
{ ;
}
Ошибка.
Попробуйте повторить позже
Пусть и
для некоторых действительных чисел
Найдите все возможные значения выражения
В ответ запишите все возможные значения выражения через пробел, если их нет, введите «».
Воспользуемся тем, что и распишем искомое выражение следующим образом:
По условию получается:
Ошибка.
Попробуйте повторить позже
Найдите величину выражения если известно, что
и сумма первых двух слагаемых выражения равна
третьему.
Источники:
Сначала напишем равенство суммы первых двух слагаемых третьему, и преобразуем его.
Так как по условию то на
можно сократить. Получаем
Подставив в самую верхнюю строчку вычислений, получим, что сумма первых двух дробей равна и третья дробь тоже равна
Значит, сумма трёх дробей равна