Параметры на Росатоме
Ошибка.
Попробуйте повторить позже
Область на плоскости, ограниченная двумя параболами и имеет площадь 32. Вертикальная прямая разбивает её на две равновеликие части. Найти и .
Источники:
Подсказка 1
Площади, графики, да тут всё намекает на определённый интеграл, а чтобы его найти надо посмотреть на модуль разности графиков, именно модуль, потому что площадь должна быть не отрицательной!
Подсказка 2
Нам сказано, что прямая x = 1 разбивает график на 2 равновеликие части, а парабола сама по себе фигура довольно симметричная, не можем ли мы что-то сказать про точку x = 1 для параболы?
Подсказка 3
Верно, это абсцисса вершины параболы, а мы умеем находить её через коэффициенты параболы, остаётся только посчитать определённый интеграл и получить условие на q, и задача будет уничтожена!
Обозначим данные параболы и пусть они пересекаются в точках с абсциссами
Ограниченная ими площадь (над одним графиком и под другим) равна модулю разности площадей под графиками на отрезке А это по формуле Ньютона-Лейбница считается как
Заметим, что полученный интеграл равен площади под графиком параболы на отрезке . По условию прямая делит эту площадь на две равновеликие. Значит, — абсцисса вершины этой параболы. С одной стороны, она равна а с другой стороны, Тогда находим
Теперь запишем данное в условии значение площади и получим уравнение на оставшийся параметр:
Ошибка.
Попробуйте повторить позже
Найти все числа , для которых неравенство выполняется при всех и любых таких, что
Источники:
Подсказка 1
Функции синус и косинус ограничены отрезком [-1;1]. Значит, можно оценить левую часть, избавившись от этих функций.
Подсказка 2
Найдите максимальное значение левой части при фиксированных коэффициентах и покажите, что оно достигается.
Подсказка 3
Используя второе условие, можно нарисовать получившиеся ограничения на C. Из рисунка будет понятно, какие значения подходят под ответ.
Покажем, что значение всегда достижимо для функции при любых
1. Если и одного знака, то
2. Если и разных знаков, то
Таким образом, при фиксированных максимальное значение равно В круге величина принимает наибольшее значение
Итак, при любых в круге и при любых справедливо неравенство так что любое не удовлетворяет условию задачи, а искомое.
Ошибка.
Попробуйте повторить позже
При каких уравнение имеет единственное решение?
Источники:
Подсказка 1
Внимательно посмотрим на левую часть. С аркфункциями работать не хочется, поэтому нужно от них избавиться. Нам намного удобнее работать с выражением arccos(cos(x)). Попробуйте привести всё к нему в левой части.
Подсказка 2
Отлично! Левая часть равна π/2 - arccos(cos(x)). Теперь взглянем на правую часть. Тут также хочется избавиться от тригонометрических функций. Обозначьте arcsin(x - a) как за угол α и воспользуйтесь тем, что sin(α) = x - a.
Подсказка 3
Так, теперь мы получили, что левая часть равна √(1 - (x-a)^2). Попробуем изобразить графики полученных функций.(Заметьте, что левую часть можно рассматривать только на отрезке [-π;π], ведь у неё период 2π).
Подсказка 4
Нам нужно только одно решение. То есть можно смотреть только на a от -π до π, а потом записать ответ с периодом 2π. Теперь всего лишь осталось посмотреть, как наша полуокружность движется в зависимости от a, и найти точки, где одно пересечение.
Изобразим график на . Сама функция имеет период , поэтому на остальной прямой график будет повторяться
Теперь посмотрим на график правой части , который будет полуокружностью
Например, графики будут расположены так при
С ростом параметра оранжевый график перемещается вправо. Достаточно рассмотреть значения , поскольку оранжевый график может пересекать не более одного “уголка” синего графика (помним про периодичность). Остаётся найти те значения параметра, при которых изменяется количество общих точек на .
Первое такое значение будет в момент первого пересечения при движении оранжевого графика вправо
Заметим, что правая точка оранжевого графика соответствует , откуда
При дальнейшем движении решение будет только одно вплоть до положения
когда решений становится два. Левая точка оранжевого графика соответствует , откуда
Дальше решения будет два вплоть до положения, когда произойдёт касание
Поскольку касательная имеет коэффициент наклона , то на полуокружности это точка (учитывая смещение на из центра координат). При этом точка касания лежит на прямой (левая часть уголка), откуда
Далее решений не будет вплоть до касания с противоположной стороны уголка в симметричной точке , где решение будет одно. Далее вплоть до решений два. Потом от неё до решение единственное, а после до решений нет.
В итоге для единственности подойдут
Остаётся учесть период и написать ответ.
Ошибка.
Попробуйте повторить позже
При каких значениях точка с координатами симметрична точке с координатами относительно прямой с уравнением
Две точки и симметричны относительно прямой , если . Это приводит к системе:
Решим первое уравнение системы:
Подставляем (*) во второе уравнение системы:
Серия (*) решений не содержит. Подставляем во второе уравнение системы:
Вторая серия содержит любые целые поэтому серия (**) подходит.