Тема . Алгебраические текстовые задачи

Задачи с неравенствами

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебраические текстовые задачи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#69312

Во всем мире популярна игра в хоккей. Многое в игре зависит от вратаря. Для отработки навыков вратарей и обеспечения тренировочного процесса, который бы не зависел от других игроков, создали шайбомет. Автомат можно настроить так, чтобы он выбрасывал шайбы с заданной временной частотой, скоростью и под определенным углом.

Пусть линия ворот находится на расстоянии 25 м от центральной точки O  хоккейной площадки. Автомат установлен на расстоянии d =16  м от точки O  по направлению к воротам, скорость выброса шайбы равна V0 = 20  м/c. Броски производятся в плоскости, перпендикулярной поверхности льда и линии ворот. При этом для обеспечения безопасности траектория вылетающих шайб должна, с одной стороны, находиться не выше прямой линии, соединяющей центр ледовой площадки O  с точкой, находящейся в плоскости полета шайб, в плоскости ворот, и на расстоянии одного метра от поверхности льда, а с другой стороны — должна пересекать плоскость ворот по нисходящей ветви траектории.

PIC

Определите максимально возможное значение тангенса угла, под которым могут вылетать шайбы из шайбомета, если траектория движения шайбы, рассматриваемой как материальная точка, в плоскости ее полета в системе координат с центром в O  и осью абсцисс, направленной вдоль поверхности льда, описывается уравнениями

({ x =d +V0tcosα
(            gt2
  y =V0tsinα − 2

Для упрощения вычислений можно считать, что ускорение свободного падения g = 10  м/c2
 .

Источники: ШВБ-2023, 11.6 (см. olymp.bmstu.ru)

Подсказки к задаче

Подсказка 1.

Вспоминаем уроки физики:) Так как переменная t у нас нигде не фигурирует, то хорошей идеей было бы от неё избавиться, подставив из первого уравнения во второе. Мы получим выражение вида y(x), в котором из тригонометрии будет находиться tg(a) и 1/cos²(a). Как бы нам получить только тангенс?

Подсказка 2.

1/cos²(a) = 1 + tg²(a). По условию наша шайба должна быть ниже условной линии на протяжении всего полёта. Тогда x * tg(b) <= y(x), где b - угол между осью площадки и линии, соединяющей центр поля с верхним концом ворот. Для каких x это должно выполняться?

Подсказка 3.

Поскольку траектория вылетающих шайб должна пересекать плоскость ворот по нисходящей ветви траектории, получили стандартное квадратичное неравенство, которое должно быть верно для всех x. Осталось записать условие неположительности дискриминанта и неотрицательности старшего члена, и оттуда найти наибольший возможный тангенс

Показать ответ и решение

Введем систему координат с центром в точке O.  Ось абсцисс направим к линии ворот.

Выразим время из первого уравнения системы и подставим во второе

                   ( x − d )2
     V0(x− d)     g V0cosα               g( x − d )2
y(x)= -V0cosα-sin α− -----2-----= (x− d)tgα − 2 V0cosα

                       2
y(x)=(x− d)tgα − g⋅ (x−2d)-⋅(1+ tg2α)
                2   V0

Чтобы шайба была ниже условной линии для любого значения x,  требуется выполнение условия

x-≥ y(x)
25

x
25 − y(x)≥ 0

для любого x ∈[16;25].  Поскольку траектория вылетающих шайб должна пересекать плоскость ворот по нисходящей ветви траектории, то неравенство

                      2
-x − (x− d)tgα + g⋅ (x−2d)-⋅(1+ tg2α)≥ 0
25             2   V0

должно выполняться для всех x.

Перепишем неравенство в более удобном виде и учтем, что выполнение этого неравенства возможно лишь при неположительном дискриминанте.

g  (x-− d)2     2         (     1-)  -d
2 ⋅  V20  ⋅(1+tg α)− (x− d) tgα− 25 + 25 ≥ 0

   (       )2
D = tgα −-1   − 4⋅-d ⋅ g⋅-12-⋅(1+ tg2α)≤0
         25      25  2 V0

Подставляем g = 10  м/c2

(     1 )2  4d      2
 tgα − 25  − 5V20 (1+tg α)≤ 0

 ′  (  )  (       )(        )
D-=  -1  − 1 −-4d2  -12 −-4d2
4    25       5V0   25   5V0

D′  -4d  1--  4d-(   -4d)   4d- 626  (-4d )2
4 = 5V20 ⋅252 + 5V02 1− 5V20  = 5V20 ⋅625 − 5V02

Подставляем d= 16  м, V0 = 20  м/с

               (     )2        (      )
D′ = 4⋅16-⋅ 626-− 4⋅16-  = --4--- 626-− 4 = -4⋅606⋅2--
 4   5⋅400  625    5⋅400     25 ⋅252   5       252 ⋅25⋅5⋅2

Теперь посчитаем сам tgα

     ( 1    2 ∘ 1212) ( 121)   5± 2√121,2
tgα=  25 ±25⋅5  -10- ∕  125- = ---121---

Значит, максимально возможное значение tg α  равно    √----
5+2121121,2.

Ответ:

 5-+2√121,2
    121

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!