Тема . Комплексные числа

.01 Операции над комплексными числами. Тригонометрическая и алгебраическая формы. Уравнения в комплексных числах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комплексные числа
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#36457

Модуль числа e−4,3−2,1i  равен?

Показать ответ и решение

Запишем наше число в канонической экспоненциальной форме: e−4,3−2,1i = e−4,3⋅e−2,1i.  Множитель −2,1i
e  по модулю равен 1.  Значит, модуль числа  −4,3−2,1i
e  равен  − 4,3  -1-
|e  |= e4,3 ∼ 0,014.

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!