Тема 18. Работа с электронными таблицами

18.03 Робот-сборщик – ямы и/или стены

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела работа с электронными таблицами
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 41#62516Максимум баллов за задание: 1

Квадрат разлинован на N×N клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной? Исходные данные записаны в файле в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, переписываем ей без изменений в ячейку А22.

Заполняем всю таблицу аналогично первой и второй задаче. Здесь достаточно стереть ячейки, что находтся внутри границ из второй таблицы.

PIC

Максимальная сумма в правой нижней ячейке 2112.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 1115.

Ответ: 21121115

Ошибка.
Попробуйте повторить позже

Задача 42#63628Максимум баллов за задание: 1

Квадрат разлинован на N × M клеток (1 < N < M < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке пересечь границы Робот разрушается.

В любой клетке поля может быть стена (стены обозначены значениями больше 100, но меньше 500) или яма (ямы обозначены значениями меньше или равны 0, но больше -400). Робот может двигаться только вниз или вправо. При попытке зайти на клетку со стеной Робот разрушается. При попытке зайти на клетку с ямой Робот застревает в ней и не может двигаться дальше.

Исходные данные записаны в файле в виде электронной таблицы прямоугольной формы. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю, не разрушившись и не застряв в яме. Известно, что такой путь существует. В ответе укажите два числа через пробел – сначала максимальную сумму, затем минимальную.

Вложения к задаче
Показать ответ и решение

Сначала найдем стены и ямы, а так же клетки, в которые никак нельзя попасть. Создаем ниже исходного поля, новое такого же размера (ячейки B13 : O22  ) и в левой верхней ячейке этого поля записываем формулу.

=ЕСЛИ(ИЛИ(A1>100;A1<1;И(A13=-1;B12=-1));-1;0)

По левому столбцу и верхней строке придется пройти вручную и поставить там -1, если в них нельзя попасть.

Создаем еще одно поле такого же размера (ячейки B24 : O33  ). Теперь в каждую ячейку этого поля запишем формулу (пример для левой верхней ячейки):

=ЕСЛИ(B13=0;A1+МАКС(A24;B23);0)

Теперь в правой нижней ячейке записана максимальная сумма, которую может собрать робот. Для того чтобы найти минимальную сумму необходимо заменить записать формулу.

=ЕСЛИ(B13=0;A1+МИН(A24;B23);100000)

Ответ: 1457 912

Ошибка.
Попробуйте повторить позже

Задача 43#64068Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 20)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке пересечь границы (внутренние, обозначенные жирными линиями, или границы квадрата) Робот разрушается. В каждой клетке квадрата указана плата за посещение в размере от 1 до 100. Посетив клетку, Робот платит за её посещение; это также относится к начальной и конечной точке маршрута Робота.

Определите минимальную и максимальную денежную сумму, которую заплатит Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа через пробел – сначала минимальную сумму, затем максимальную.

Вложения к задаче
Показать ответ и решение

Нам дано поле 17 на 17, создадим рядом еще одно поле такого же размера (ячейки A19 : Q35  ) . В левую верхнюю клетку нового поля записываем значение из левой верхней клетки исходного поля – 19.

Сначала заполним значениями верхнюю строку, так как на ней нет дополнительных границ. Для этого к значению из левой верхней клетки нового поля прибавим значение из клетки B1  , сделаем это с помощью формулы:

=A19+B1

Теперь, чтобы заполнить оставшиеся ячейки верхней строки нового поля, растянем эту формулу на всю строку. Подобным образом заполним левый столбец нового поля.

Найдем максимальное значение суммы. Рассмотрим ячейку B2  , в нее мы можем попасть из B1  и A2  , тогда, чтобы в этой клетке суммы была максимальной, необходимо выбрать максимальную сумму из тех двух клеточек, из которых можем попасть в эту. В ячейку B20  запишем формулу:

=МАКС(A20;B19)+B2

Теперь растянем эту формулу на все ячейки. Так как после того как мы растянули формулу пропали границы, необходимо их вернуть. Для этого выделим изначальную таблицу и скопируем ее. Далее кликнем в ячейку A19 правой кнопкой мыши и выберем "Специальная вставка> "Форматирование". Границы вернулись, а формулы не исчезли.

Теперь необходимо изменить формулы в ячейках около стен. Справа от вертикальных стен запишем формулы по аналогии с тем, как был заполнен самый левый столбец, а снизу от горизонтальных стен – по аналогии с верхней строкой. Так же в исходном поле есть ячейка K7, в которую мы не может попасть никак, поэтому из соответствующей ячейки нового поля необходимо удалить значение. Так же, из-за этого, мы не можем попасть ни в одну ячейку диапазона K7:L10, удалим значение и из клеток нового поля, соответствующих этому диапазону.

После изменения формул во всех ячейках около стен, в правой нижней ячейке будет максимальное значение.

Для минимальной суммы порядок действий аналогичный, только в формуле вместо функции МАКС используется функция МИН.

Ответ: 1005 2166

Ошибка.
Попробуйте повторить позже

Задача 44#72804Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала максимальный, затем минимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А22.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A22+B1 и растянем ее до ячейки S22. Для первого столбца пропишем формулу: =A22+A2 и растянем ее до ячейки A40. В ячейку B23 запишем форумулу: =B2+МАКС(B22;A23) и растянем ее до S40.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СПРАВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху.

Максимальная сумма в правой нижней ячейке 2611.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 1373.

PIC

Ответ: 26111373

Ошибка.
Попробуйте повторить позже

Задача 45#72805Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала максимальный, затем минимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А22.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A22+B1 и растянем ее до ячейки S22. Для первого столбца пропишем формулу: =A22+A2 и растянем ее до ячейки A40. В ячейку B23 запишем форумулу: =B2+МАКС(B22;A23) и растянем ее до S40.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СПРАВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху.

Максимальная сумма в правой нижней ячейке 2597.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 1432.

PIC

Ответ: 25971432

Ошибка.
Попробуйте повторить позже

Задача 46#72806Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала минимальный, затем максимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем еебез изменений в ячейку А22.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A22+B1 и растянем ее до ячейки S22. Для первого столбца пропишем формулу: =A22+A2 и растянем ее до ячейки A40. В ячейку B23 запишем форумулу: =B2+МАКС(B22;A23) и растянем ее до S40.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной. Затем обратим внимание на ячейку L27, в нее нельзя прийти ни сверху, ни слева, тогда во всех ячейках диапазона L27:M31 запишем 0, так как в них нельзя попасть, поэтому при поиске максимума такое маленькое число не будет учитываться.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

Максимальная сумма в правой нижней ячейке 2483.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. А в красном диапазоне вместо 0 написать большое число, например, 1000. Минимальная сумма равна 1128.

PIC

Ответ: 11282483

Ошибка.
Попробуйте повторить позже

Задача 47#72807Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала минимальный, затем максимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А22.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A22+B1 и растянем ее до ячейки S22. Для первого столбца пропишем формулу: =A22+A2 и растянем ее до ячейки A40. В ячейку B23 запишем форумулу: =B2+МАКС(B22;A23) и растянем ее до S40.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СПРАВА от стены. Затем обратим внимание на ячейки N31:P35, они окружены стенами, в них никак не попасть, поэтому запишем в них 0, так как при поиске максимума такое маленькое число не будет учитываться.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху.

Максимальная сумма в правой нижней ячейке 2647.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. А в красном диапазоне вместо 0 написать большое число, например, 10000. Минимальная сумма равна 1402.

PIC

Ответ: 14022647

Ошибка.
Попробуйте повторить позже

Задача 48#72808Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней, это также относится к начальной и конечной клеткам маршрута. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала максимальный, затем минимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А19.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A19+B1 и растянем ее до ячейки P19. Для первого столбца пропишем формулу: =A19+A2 и растянем ее до ячейки A34. В ячейку B20 запишем форумулу:=B2+МАКС(A20;B19) и растянем ее до P34.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СПРАВА от стены. Затем обратим внимание на ячейку I27, в нее нельзя прийти ни сверху, ни слева, тогда во всех ячейках диапазона I27:L31 запишем 0, так как в них нельзя попасть, поэтому при поиске максимума такое маленькое число не будет учитываться.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху.

Максимальная сумма в правой нижней ячейке 1999.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. А в красном диапазоне вместо 0 написать большое число, например, 10000. Минимальная сумма равна 1169.

PIC

Ответ: 19991169

Ошибка.
Попробуйте повторить позже

Задача 49#72809Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой нижней клетке и заканчивает в правой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите разность между максимальным и минимальным количеством.

Вложения к задаче
Показать ответ и решение

Так как робот идет из нижней левой в правую верхнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А34.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A34+B16 и растянем ее до ячейки P34. Для первого столбца пропишем формулу: =A34+A15 и растянем ее до ячейки A19. В ячейку B33 запишем форумулу: =B15+МАКС(A33;B34) и растянем ее до P19.

Выделяем желтым цветом диапазон ячеек, которые стоят НАД стеной и зеленым цветом, которые стоят СПРАВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся снизу, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая снизу.

Максимальная сумма в правой верхней ячейке 2197.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 997.

PIC

Тогда разность равна: 2197 − 997 = 1200  .

Ответ: 1200

Ошибка.
Попробуйте повторить позже

Задача 50#72810Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой нижней клетке и заканчивает в правой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сумму максимального и минимального количества, которые могут быть получены исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из нижней левой в правую верхнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А44.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A44+B21 и растянем ее до ячейки P44. Для первого столбца пропишем формулу: =A44+A20 и растянем ее до ячейки A24. В ячейку B43 запишем форумулу: =B20+МАКС(A43;B44) и растянем ее до P24.

Выделяем желтым цветом диапазон ячеек, которые стоят НАД стеной и зеленым цветом, которые стоят СПРАВА от стены. Также заметим, что мы никак не сможем попасть в ячейки G29:J36, поэтому запишем в них 0, так как при поиске максимума такое маленькое число не будет учитываться.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся снизу, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая снизу.

Максимальная сумма в правой верхней ячейке 2487.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. А в красном диапазоне вместо 0 написать большое число, например, 10000. Минимальная сумма равна 1011.

PIC

Тогда сумма равна: 2487+ 1011 = 3498  .

Ответ: 3498

Ошибка.
Попробуйте повторить позже

Задача 51#72811Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой нижней клетке и заканчивает в правой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала максимальный, затем минимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из нижней левой в правую верхнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку А38.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =A38+B18 и растянем ее до ячейки R38. Для первого столбца пропишем формулу: =A38+A17 и растянем ее до ячейки A21. В ячейку B37 запишем форумулу: =B17+МАКС(A37;B38) и растянем ее до R21.

Выделяем желтым цветом диапазон ячеек, которые стоят НАД стеной и зеленым цветом, которые стоят СПРАВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся снизу, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая снизу.

Максимальная сумма в правой верхней ячейке 1357.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 814.

PIC

Ответ: 1357814

Ошибка.
Попробуйте повторить позже

Задача 52#72812Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВЛЕВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку влево или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в правой нижней клетке и заканчивает в левой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала минимальный, затем максимальный результат без разделителей, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из нижней правой в левую верхнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку R38.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =R38+Q18 и растянем ее до ячейки A38. Для первого столбца пропишем формулу: =R38+R17 и растянем ее до ячейки R21. В ячейку Q37 запишем форумулу: =Q17+МАКС(R37;Q38) и растянем ее до A21.

Выделяем желтым цветом диапазон ячеек, которые стоят НАД стеной и зеленым цветом, которые стоят СЛЕВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая справа.

В зеленые ячейки можно прийти только из ячеек, находящихся снизу, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая снизу.

Максимальная сумма в левой верхней ячейке 1412.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 825.

PIC

Ответ: 8251412

Ошибка.
Попробуйте повторить позже

Задача 53#72813Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВЛЕВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку влево или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в правой нижней клетке и заканчивает в левой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле в виде электронной таблице размером N × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите разность между максимальным и минимальным количеством.

Вложения к задаче
Показать ответ и решение

Так как робот идет из нижней правой в левую верхнюю клетку и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку R38.

Заполняем всю таблицу аналогично самым простым задачм. Для первой строки пропишем формулу: =R38+Q18 и растянем ее до ячейки A38. Для первого столбца пропишем формулу: =R38+R17 и растянем ее до ячейки R21. В ячейку Q37 запишем форумулу: =Q17+МАКС(R37;Q38) и растянем ее до A21.

Выделяем желтым цветом диапазон ячеек, которые стоят НАД стеной и зеленым цветом, которые стоят СЛЕВА от стены.

PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая справа.

В зеленые ячейки можно прийти только из ячеек, находящихся снизу, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая снизу.

Максимальная сумма в правой нижней ячейке 1417 .

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 866.

PIC

Тогда разность равна: 1417 − 866 = 551  .

Ответ: 551

Ошибка.
Попробуйте повторить позже

Задача 54#84150Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 30)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вниз. По команде влево Робот перемещается в соседнюю левую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от − 100  до 100  . Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые слева и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая левую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из правой верхней клетки в конечную клетку маршрута. В ответе укажите два числа через пробел — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Так как робот идет из правой верхней клетки в левую нижнюю и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку Q19. Заполняем всю таблицу аналогично самым простым задачм. В ячейку P19 вставляем формулу:

=Q19 + P1

Растягиваем её для первой строчки до А19. В ячейку Q20 вставляем формулу:

=Q19 + Q2

Растягиваем её для последнего столбца до Q35. В ячейку P20 вставляем формулу:

=МАКС(P19;Q20)+P2

Растягиваем её до конца таблицы - до ячейки A35.

PIC

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СЛЕВА от стены.

В желтые ячейки можно прийти только из ячеек, находящихся справа, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая справа.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для последнего столбца, то есть исходная ячейка + предыдущая сверху.

Важно отметить, что так как в этой задаче конечных ячеек несколько, максимальную и минимальную суммы нужно выбирать из всех возможных вариантов.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 1024 -1166

Ошибка.
Попробуйте повторить позже

Задача 55#87533Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 30)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от -100 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые справа и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута. В ответе укажите два числа через пробел — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 18 на 18, создадим еще одно поле ниже (A20:R37), в котором будем считать искомые значения. В ячейку A20 запишем число из A1 без изменений; Заполняем всю остальную таблицу аналогично самым простым задачам. В ячейку B20 вставляем формулу:

=A20+B1

Растягиваем её для первой строчки до R20. В ячейку A21 вставляем формулу:

=A20+A2

Растягиваем её для первого столбца до A37. В ячейку B21 вставляем формулу:

=МАКС(A21;B20)+B2

Растягиваем её до конца таблицы - до ячейки R37.

Выделяем желтым цветом диапазон ячеек, которые стоят справа от стены и зеленым цветом, которые стоят под стеной. В желтые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху. В зеленые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

Важно отметить, что так как в этой задаче конечных ячеек несколько, максимальную и минимальную суммы нужно выбирать из всех возможных вариантов.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 1215 -1299

Ошибка.
Попробуйте повторить позже

Задача 56#87534Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой нижней клетке и заканчивает в правой верхней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной? В ответе укажите два числа через пробел — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 21 на 21, создадим еще одно поле ниже (A23:U43), в котором будем считать искомые значения. В ячейку A43 запишем число из A21 без изменений; Заполняем всю остальную таблицу аналогично самым простым задачам. В ячейку B43 вставляем формулу:

=A43+B21

Растягиваем её для последней строчки до R20. В ячейку A42 вставляем формулу:

=A43+A20

Растягиваем её для первого столбца до A23. В ячейку B43 вставляем формулу:

=МАКС(A42;B43)+B20

Растягиваем её до конца таблицы - до ячейки U23.

Выделяем желтым цветом диапазон ячеек, которые стоят справа от стены и зеленым цветом, которые стоят над стеной. В желтые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху. В зеленые ячейки можно прийти только из ячеек, находящихся справа, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для последней строки, то есть исходная ячейка + предыдущая справа. В ячейки выделенные красным никак нельзя попасть, оттуда нужно убрать значение. Над красной зоной и справа от нее также модернизуем формулы.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 3440 1236

Ошибка.
Попробуйте повторить позже

Задача 57#87535Максимум баллов за задание: 1

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной? В ответе укажите два числа через пробел — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 19 на 19, создадим еще одно поле ниже (A21:S39), в котором будем считать искомые значения. В ячейку A21 запишем число из A1 без изменений; Заполняем всю остальную таблицу аналогично самым простым задачам. В ячейку B21 вставляем формулу:

=A21+B1

Растягиваем её для первой строчки до S21. В ячейку A22 вставляем формулу:

=A21+A2

Растягиваем её для первого столбца до A39. В ячейку B22 вставляем формулу:

=МАКС(A22;B21)+B2

Растягиваем её до конца таблицы - до ячейки S39.

Выделяем желтым цветом диапазон ячеек, которые стоят справа от стены и зеленым цветом, которые стоят под стеной. В желтые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху. В зеленые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 2452 1302

Ошибка.
Попробуйте повторить позже

Задача 58#87536Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 30)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 200. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Если в ячейке лежит монета с номиналом кратным 7, то Робот не забирает из данной клетки монеты. Данное правило применимо также к начальной и конечной клетке.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа через пробел – сначала минимальную сумму, затем максимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 15 на 15, создадим еще одно поле ниже (A17:O31), в котором будем считать искомые значения. В ячейку A17 запишем число из A1 без изменений, так как оно не кратно 7; Заполняем всю остальную таблицу аналогично самым простым задачам, но не забываем учесть условие кратности 7. В ячейку B17 вставляем формулу:

=A17+ЕСЛИ(ОСТАТ(B1;7)=0;0;B1)

Растягиваем её для первой строчки до O17. В ячейку A18 вставляем формулу:

=A17+ЕСЛИ(ОСТАТ(A2;7)=0;0;A2)

Растягиваем её для первого столбца до A31. В ячейку B18 вставляем формулу:

=МАКС(A18;B17)+ЕСЛИ(ОСТАТ(B2;7)=0;0;B2)

Растягиваем её до конца таблицы - до ячейки O31.

Выделяем желтым цветом диапазон ячеек, которые стоят справа от стены и зеленым цветом, которые стоят под стеной. В желтые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху. В зеленые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева. В красные ячейки мы можем прийти, но выбраться из них - не можем, по этой причине, мы не должны учитывать значения в этих ячейках.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 825 2323

Ошибка.
Попробуйте повторить позже

Задача 59#87538Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 30)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Если в ячейке лежит монета с номиналом кратным 3 и одновременно большим 33, то Робот не забирает из данной клетки монеты. Данное правило применимо также к начальной и конечной клетке.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа через пробел – сначала минимальную сумму, затем максимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 18 на 18, создадим еще одно поле ниже (A20:R37), в котором будем считать искомые значния. В ячейку A20 запишем число из A1 без изменений, так как оно проходит под условие; Заполняем всю остальную таблицу аналогично самым простым задачам, но не забываем учесть условие. В ячейку B20 вставляем формулу:

=A20+ЕСЛИ(И(ОСТАТ(B1;3)=0;B1>33);0;B1)

Растягиваем её для первой строчки до R20. В ячейку A21 вставляем формулу:

=A20+ЕСЛИ(И(ОСТАТ(A2;3)=0;A2>33);0;A2)

Растягиваем её для первого столбца до A37. В ячейку B21 вставляем формулу:

=МАКС(A21;B20)+ЕСЛИ(И(ОСТАТ(B2;3)=0;B2>33);0;B2)

Растягиваем её до конца таблицы - до ячейки R37.

Выделяем желтым цветом диапазон ячеек, которые стоят справа от стены и зеленым цветом, которые стоят под стеной. В желтые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху. В зеленые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева. В красные ячейки мы можем прийти, но не можем из них выбраться, по этой причине, значения из этих ячеек мы не учитываем.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 735 1971

Ошибка.
Попробуйте повторить позже

Задача 60#87539Максимум баллов за задание: 1

Квадрат разлинован на N  ×N  клеток (1 < N < 30)  . Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вниз. По команде влево Робот перемещается в соседнюю левую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от -100 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые слева и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая левую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из правой верхней клетки в конечную клетку маршрута. В ответе укажите два числа через пробел — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Вложения к задаче
Показать ответ и решение

Нам дано поле 28 на 28, создадим еще одно поле ниже (A30:AB57), в котором будем считать искомые значения. Так как робот идет из правой верхней клетки в левую нижнюю и эта клетка удовлетворяет условиям нашей задачи, то переписываем ее без изменений в ячейку AB30. Заполняем всю таблицу аналогично самым простым задачм. В ячейку AA30 вставляем формулу:

=AB30+AA1

Растягиваем её для первой строчки до А30. В ячейку AB31 вставляем формулу:

=AB30+AB2

Растягиваем её для последнего столбца до AB57. В ячейку AA31 вставляем формулу:

=МАКС(AA30;AB31)+AA2

Растягиваем её до конца таблицы - до ячейки A57.

Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят СЛЕВА от стены. В желтые ячейки можно прийти только из ячеек, находящихся справа, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичную формуле для первой строки, то есть исходная ячейка + предыдущая справа. В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для последнего столбца, то есть исходная ячейка + предыдущая сверху.

Важно отметить, что так как в этой задаче конечных ячеек несколько, максимальную и минимальную суммы нужно выбирать из всех возможных вариантов.

PIC

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН.

Ответ: 1808 -2355
Рулетка
Вы можете получить скидку в рулетке!