5.03 Действия над цифрами числа
Ошибка.
Попробуйте повторить позже
Автомат получает на вход пятизначное число. По этому числу строится новое число по таким правилам:
1. Складываются квадраты цифр, стоящих на нечетных позициях;
2. Складываются квадраты цифр, стоящих на четных позициях;
3. Затем в порядке возрастания записываются эти суммы.
Укажите наименьшее число, при вводе которого автомат выдает число 36107.
for i in range(10000, 100000): s = str(i) k1 = int(s[0])**2 + int(s[2])**2 + int(s[4])**2 k2 = int(s[1])**2 + int(s[3])**2 first = str(min(k1, k2)) second = str((max(k1, k2))) s1 = first + second if s1 == ’36107’: print(i) break
Сумма квадратов 3 чисел принадлежит промежутку [0,243], а сумма квадратов 2 чисел промежутку [0,162]. В соответствие с этими правилами число разбивается на число 36 и 107. Раскладывая данные числа на суммы квадратов, получаем набор цифр для исходного числа {0,1,5,6,9}, при этом цифры {0,6} находятся на четных позициях, а цифры {1,5,9} на нечетных. Тогда минимальное число есть 10569.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!