Алгебра. Исследование замены
Ошибка.
Попробуйте повторить позже
Найти все значения , при которых уравнение имеет решение.
Обозначим за . Выразим синус и косинус через тангенс половинного угла. Получим уравнение
Домножив на знаменатель, получаем уравнение относительно .
Если старший член не равен 0, оно имеет решение тогда и только тогда, когда его дискриминант неотрицателен, а значит, . Откуда . Поскольку уравнение имеет решение при любом вещественном , все , удовлетворяющие полученному условию, нам подходят.
Если же старший член равен 0, то также нессложно видеть, что уравнение имеет решение.
Осталось рассмотреть случай, когда мы не можем сделать такую замену. Это значит, что . Но тогда . То есть в этом случае , такое число уже входит в полученный отрезок.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!