Монотонность и производная в параметрах, уравнения вида f(t) = f(z) или f(f(x)) = x
Ошибка.
Попробуйте повторить позже
При каких значениях параметра существует прямая, касающаяся графика функции
в двух точках? Для каждого
такого значения параметра
найдите уравнение соответствующей прямой.
Условие, что прямая вида касается графика
означает равенство функций и равенство производных в точке
касания:
Нас интересует, когда эта система имеет ровно корня. Заметим, что система эквивалентна
То есть должна существовать прямая , которая касается графика
.
При ее производная
монотонная функция, а значит,
имеет не более одного решения, тогда и вся
система имеет не более одного решения.
При можно заметить, что касательные в точках локального минимума
(нашли их как корни производной
) имеют одинаковый коэффициент наклона
, а также в этих точках значение функции совпадает в силу чётности. Тогда
прямая
будет касательной сразу к двум точкам (только к двум точкам, потому что в точке
касательная
; в других же точках коэффициент наклона касательной не
).
Возвращаясь к изначальным обозначениям, получаем . То есть искомая касательная это
.
при , прямая
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра при которых система
имеет единственное решение где
— целые числа. Укажите это решение при каждом из найденных
Источники:
Преобразуем второе уравнение системы следующим образом:
Из первого уравнения системы следует, что Из третьего уравнения системы
Введём функцию
Она является произведением строго возрастающих функций при Значит, тоже является строго возрастающей функцией при
Значит, она имеет свойство:
Запишем преобразованное уравнение, используя обозначение
Следовательно, по свойству оно равносильно
Подставляя получившиеся выражение в первое уравнение системы, получим
Обозначим Тогда исходное уравнение будет иметь вид
Решениями последнего уравнения являются все и
такие, что
Отсюда имеем
В системе построим графики функций
Из графиков понимаем, чтобы выполнялось ранее получившиеся двойное неравенство, точка должна лежать в закрашенной
области.
Заметим, что если — целое число, то
будет целым, если целое. Поэтому нам остаётся отобрать только такие целые
для которых будет только один такой целый
что
точка
лежит в закрашенной зоне на графике:
При имеем решение
При имеем решение
При имеем решение
При имеем решение
При имеем решение
При имеем решение
Ошибка.
Попробуйте повторить позже
Найдите все значения , при каждом из которых уравнение
не имеет корней.
Преобразуем выражение:
Функция возрастает на всей вещественной оси. Заметим, что в нашем уравнении стоит с одной стороны
, а с
другой
. Тогда уравнение переписывается как
Но монотонна, откуда наше уравнение равносильно равенству аргументов
Последнее уравнение не имеет корней при .
Ошибка.
Попробуйте повторить позже
Найдите все значения , при которых уравнение
имеет единственное решение.
Из оценки подкоренного выражения следует, что . Заметим. что функция в левой части уравнения монотонно убывает, а функция в
правой части - монотонно возрастает. Поэтому при всех
уравнение имеет не более одного решения. Предположим, что
. Тогда
, откуда на области определения левой части правая часть всегда меньше 0 , а левая - не меньше 0 , поэтому нет решений. Если
же
, то при
левая часть определена, а правая равна 0 , а при
левая часть равна 0 . а правая не
меньше 0 , поэтому на отрезке
есть хотя бы один корень, но так как мы показали, что корней не больше 1 , то он
единственный.
Ошибка.
Попробуйте повторить позже
Найдите все значения , для каждого из которых при любом
наибольшее из двух чисел
и
положительно.
Источники:
Функция строго возрастает, а
— убывает. Поэтому указанное в задаче требование на
параметр
означает, что точка пересечения графиков этих функций лежит выше оси абсцисс, т.е. их значение в корне
(угадываемом) уравнения
положительно, т.е.
Ошибка.
Попробуйте повторить позже
Укажите все значения параметра , при каждом из которых система
имеет решения, и найдите эти решения.
Источники:
ОДЗ:
Из первого уравнения имеем Подставим в неравенство:
Поскольку функция в левой части монотонно возрастает, то меньше 4 она будет при всех до момента равенства. А равенство
достигается при
В итоге с учётом ОДЗ , откуда
, причём для каждого значения существует ровно одна пара
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра , при каждом из которых
имеет ровно три различных решения.
Источники:
По свойствам логарифмов и степеней уравнение переписывается в виде
Перенесём вычитаемое направо, поделим обе части на 3 и на обе степени троек:
Пусть Эта функция монотонно возрастает на всей области определения как произведение возрастающих функций,
поэтому
Три решения будут в случае касания для и в случае когда
поскольку совпадают вершины параболы
и "уголка"
Ошибка.
Попробуйте повторить позже
Функция с областью определения
удовлетворяет равенству
для любого . Для каждого значения
решите неравенство
Источники:
Функция является обратной к функции
для
. Поскольку здесь
монотонно возрастает, то и
, как обратная,
будет монотонно возрастать. Отсюда следует
Дополнительно учитываем ОДЗ, то есть . Имеем систему
Точками смены знака будут , однако их порядок зависит от знака
. При
получаем решения
, а
при
.
при
при