Последовательности, многочлены и квадратные трёхчлены на Энергетике
Ошибка.
Попробуйте повторить позже
Коэффициенты многочлена степени
взятые в том же порядке (начиная со старшей степени), образуют геометрическую прогрессию со знаменателем
Выясните, может ли
иметь только один корень.
Если может, укажите минимальную степень (из диапазона выше), при которой это возможно, и выразите корень через и
. Если
нет, укажите минимально возможное количество корней при любом
Источники:
Заметим, что и
следовательно
Значит,
не является корнем.
Поймём, что одночлены (начиная со старшего) в многочлене образуют геометрическую прогрессию с знаменателем
Значит, многочлен может быть представлен как сумма первых
члена данной прогрессии. Заметим, что если
то
Значит, не корень. Поэтому дальше будем считать
и запишем следующее
Выразим корни с учётом и
Если нечётно, тогда
чего быть не может, а если
чётно, тогда
а в силу ограничений получаем
Это
и будет единственным корнем.
Теперь найдём минимальное Из условий
и
чётно получаем, что
подходит.
может при , корень равен
Ошибка.
Попробуйте повторить позже
Рассматривается многочлен
в котором коэффициент и сумма
нечётные целые числа. Могут ли корни такого многочлена быть целыми
числами?
Путем несложных преобразований (например, выделяя полный квадрат) многочлен приводится к виду
Таким образом, задача сведена к аналогичной для корней квадратного трёхчлена.
Пусть и
— целые корни уравнения. Тогда
, и оно нечётное. Отсюда следует, что каждое из чисел
и
—
нечётное. Тогда поскольку сумма двух нечётных чисел
— чётная, а сумма
нечётная, то число
— тоже нечётное. Но с
другой стороны, число
должно быть чётным, так как
а сумма двух нечётных чисел
— чётная.
Противоречие.
Не могут.
Ошибка.
Попробуйте повторить позже
При обработке числовых данных часто приходится вычислять среднее арифметическое
и решать уравнения, содержащие среднее арифметическое. Найдите все конечные (состоящие из конечного числа элементов) числовые
множества такие, что для любых
и
из
множество
содержит корень
уравнения
Источники:
Имеем
Требуемым в условии задачи свойством обладает любое одноэлементное множество
так как
Допустим далее, что множество содержит по крайней мере два различных элемента
причем
(без ограничения общности).
Для уравнения
находим, согласно (1),
Затем для уравнения
получаем
после чего
рассматриваем уравнение
и получаем
Продолжая таким же образом, получаем последовательность
решений
Покажем, что все её члены попарно различны. Если допустить, что
при
то,
преобразуя равенство, получим
откуда
это невозможно. Итак, множество
содержит бесконечное
подмножество — последовательность (3), следовательно, множество
бесконечно.
в точности все одноэлементные множества
Ошибка.
Попробуйте повторить позже
Внутри параболы расположены несовпадающие окружности
так, что при каждом
окружность
касается
ветвей параболы и внешним образом окружности
Найдите радиус окружности
если известно, что диаметр
равен
и
она касается параболы в ее вершине.
Источники:
Первое решение.
Посмотрим, при каких условиях окружность касается параболы. Пусть есть окружность радиуса с центром в точке
а
—
точка касания окружности и параболы. Проведем касательную
Тогда
Проведём через точку прямую, параллельную оси
— точка пересечения прямой и оси
Тогда
Получаем, что но
, так как
— касательная
в точке
Значит,
Тогда по теореме Пифагора получаем, что
Теперь рассмотрим случай с двумя окружностями.
Пусть и
Тогда
Также знаем, что
Из и
получаем, что
.
То есть мы поняли, что если есть две окружности радиуса и
соответственно, которые касаются параболы и друг друга, то их
радиусы отличаются на
.
Тогда получается, если то
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Пусть — радиус
-й окружности,
Тогда уравнение
-й окружности имеет вид:
Условие касания означает то, что уравнение имеет один корень, тогда его дискриминат
равен нулю, то есть
(так как
Отсюда
Покажем по индукции, что База уже есть, докажем переход.
Тогда получается, что