Тема Ломоносов

Ломоносов - задания по годам .04 Ломоносов 2012

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Разделы подтемы Ломоносов - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#31287

В группу из 17 детей присланы подарки двух видов: каждый подарок первого вида содержит 4 пряника и 9 конфет, а второго — 3 пряника и 11 конфет. Объединив эти подарки, все пряники разделили между детьми поровну. Могло ли случиться при этом, что конфеты разделить поровну не удалось?

Источники: Ломоносов-2012, 11.3 (см. olymp.msu.ru)

Показать ответ и решение

Пусть подарков первого вида x  , а второго — y  , тогда a =4x+ 3y  кратно 17, а спрашивают нас про b=9x +11y  . Заметим, что 2a+ b= 17(x+ y)  , то есть 2a+ b ≡170=⇒ b ≡170  , так что такого случиться не может.

_________________________________________________________________________________________________________________________________________________________________________________

Интересный факт. Задача придумывалась на основе факта, что определитель матрицы

(     )
 4  9
 3  11

равен 17  . По условию эта матрица умножается на целочисленный вектор (x  , y  ) и получается (17m  , n  ), откуда из целочисленности x  сразу следует, что 11⋅17n − 3⋅m  делится на 17.

Ответ:

нет

Ошибка.
Попробуйте повторить позже

Задача 2#38687

Найдите все целочисленные решения уравнения

||          πx||
|arcsin(cos4)−  2|= 4.

Источники: Ломоносов-2012, 11.2 (см. olymp.msu.ru)

Показать ответ и решение

Поскольку arcsincos4∈ [− π,π]
            2 2 , то arcsin cos4= 4− 3π
             2  (пользуемся тем, что cost= sin(π − t)= sin(t+ π)= sin(t− 3π)
        2            2         2 ). Тогда

||(3+ x)π   ||         3 +x                    16
||--2---− 4||=4  ⇐ ⇒  --2-π =0,8  ⇐⇒   x∈ {−3,π-− 3}
Ответ:

− 3

Ошибка.
Попробуйте повторить позже

Задача 3#67153

Решите уравнение

  (3   )  (2   )2
4 x − x = x  +1

Источники: Ломоносов, 2012, 8--9 класс

Показать ответ и решение

Раскроем скобки:

 4    3   2
x − 4x + 2x + 4x+ 1= 0

x= 0  не является корнем уравнения, поэтому поделим обе части на x2 :

 2         4  1-      2  -1   (    1)
x − 4x+ 2+ x + x2 = 0⇔ x + x2 − 4 x− x + 2= 0

Сделаем замену       1
t= x− x;  Тогда  2   2  1-
t = x + x2 − 2  и получаем

t2 +2− 4t+2 =0 ⇔ t=2

Обратная замена:

   1      x2-− 2x−-1          √ -
x− x = 2⇔    x    = 0⇔ x =1 ±  2
Ответ:

 1± √2

Ошибка.
Попробуйте повторить позже

Задача 4#68198

Точка O  — центр вписанной в треугольник ABC  окружности. Продолжение отрезка BO  за точку O  пересекает описанную вокруг треугольника ABC  окружность в точке D.  Найдите угол B,  если OD = 4AC.

Показать ответ и решение

PIC

Первое решение.

Если AC =a,  то по лемме о трезубце AD = DO = 4a =CD.  Отсюда по теореме косинусов

             2    2  2
cos∠ADC = 16a-+16a-−-a-= 31
             2⋅4a⋅4a     32

Так как ABCD  — вписанный четырехугольник, то ∠ABC = 180∘− ∠ADC  и cos∠ABC = − 3312.  Значит, ∠ABC = arccos(− 3312).

Второе решение.

Пусть M  — середина AC  , тогда ∠DMC  = 90∘ , потому что треугольник ACD  равнобедренный. По лемме о трезубце CD = OD = 4AC =8MC.  Следовательно, ∠MDC  = arcsin1
            8  . Далее нетрудно посчитать:

∠ABC  =180∘− ∠ADC = 180∘− 2∠MDC  =

                             (    )
= 180∘− 2arcsin 1= 2arccos 1= arccos  − 31
             8        8         32
Ответ:

 2arccos1 =arccos(− 31)
      8         32

Ошибка.
Попробуйте повторить позже

Задача 5#77013

В течение дня выставку посетили по одному разу ровно 1000  человек, причём в любой момент на ней находилось менее 38  посетителей. Какое наибольшее количество человек, не встречавшихся (попарно) на выставке друг с другом, можно при этом гарантированно выбрать из всех посетителей?

Показать ответ и решение

Заметим, что 1000= 37⋅27+1.  Это означает, что было не менее 28  посещений. Следовательно можно выбрать 28  человек из разных посещений. Более 28  гарантировать нельзя, потому что 1000  можно разбить на 28  слагаемых так, что каждое не превосходит 37  (например, 27  слагаемых по 37  и одно — 1  человек). Тогда если сначала выставку посетят первые 37  человек, потом — следующие, а в конце — один человек из последнего слагаемого, то по принципу Дирихле не получится выбрать 29  и более человек (какие-то два окажутся в одной группе).

Ответ:

 28

Ошибка.
Попробуйте повторить позже

Задача 6#80573

Найдите все значения a> 0  , при каждом из которых из неравенства

 2   2
x + y ≤ a

следует неравенство

(|x|+ 3)(|y|+ 3)≤25.
Показать ответ и решение

(|x|+ 3)(|y|+3)= |xy|+ 3|x|+3|y|+ 9

Для любого значения t  верно t2+4 ≥2√4t2 = 4|t|,  поэтому с использованием неравенства о средних для двух чисел:

                   x2+-y2   x2+-4   y2-+4-    5(x2+-y2)
|x|⋅|y|+ 3|x|+ 3|y|+9≤    2  + 3  4  + 3 4   +9=     4   + 15

По условию это не превосходит 5a
4 +15,  поэтому при a≤ 8  получаем искомое

              5⋅8
(|x|+ 3)(|y|+ 3)≤ -4- +15= 25

Если a> 8  , то рассмотрим       ∘ --
x =y =  a2 >2.  Такая пара (x,y)  подходит под первое условие, но не подходит под второе.

Ответ:

 a ≤8

Рулетка
Вы можете получить скидку в рулетке!