Тема СПБГУ

СПБГУ - задания по годам .10 СПБГУ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Разделы подтемы СПБГУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#87405

Кузнечик прыгает по числовой прямой. Каждый свой прыжок он может совершить в любом направлении. Он начинает в точке 0 прыжком единичной длины. Каждый следующий прыжок должен быть на три больше предыдущего (т.е. первый прыжок длины 1, второй длины 4, третий длины 7 и т.д.). За какое наименьшее число прыжков кузнечик сможет оказаться в точке 2024?

Источники: СПБГУ - 2024, 11.1 (см. olympiada.spbu.ru)

Показать ответ и решение

Процесс прыжков можно описать следующим образом: n  прыжков кузнечика — это сумма n  первых членов арифметической прогрессии an =3n− 2  , в которой перед каждым членом стоит +  или − . Ясно, что за n  прыжков кузнечик сможет оказаться не более, чем в (3n−1)n
   2  — сумма n  первых членов, в которой все члены взяты с +  . Значит, необходимо, чтобы (3n−1)n-
  2  было не меньше 2024  . То есть n ≥37  .

Пусть кузнечик прыгал влево некоторое количество прыжков, и суммарно он прыгнул влево на x  единиц, тогда после n  прыжков он окажется в точке (3n−1)n
  2   − 2x  . Значит, чтобы попасть в 2024  , необходимо, чтобы (3n−1)n-
  2  было чётным. Значит, 37  и 38  прыжков не хватит. В качестве примера на 39  можно прыгнуть влево на 2  и на 39  прыжках, а на остальных — вправо.

Ответ: 39

Ошибка.
Попробуйте повторить позже

Задача 2#87410

Найдите угол α,  если известно, что 0< α <90∘ и

     (1+-tg2∘)(1+-tg5∘)−-2
tgα= (1− tg2∘)(1− tg5∘)− 2

Источники: СПБГУ - 2024, 11.2 (см. olympiada.spbu.ru)

Показать ответ и решение

Вспомним формулу тангенса суммы:

  ∘  -tg5∘-+tg2∘
tg7 = 1 − tg5∘tg2∘

Проведём с ней некоторые махинации:

              ∘  ∘     ∘    ∘           ∘       ∘
tg7∘+ 1= 1−-tg5-tg2-+∘tg5∘+tg2-= 2-− (1−-tg2-)∘(1−∘tg5)
              1− tg5 tg2           1− tg5 tg2

Домножим на знаменатель:

(1 − tg2∘)(1− tg5∘)− 2= −(tg7∘+ 1)(1− tg5∘tg2∘)

Если аналогично рассмотреть выражение tg7∘− 1  , то мы получим, что

(1+ tg 2∘)(1 +tg5∘)− 2= (tg7∘− 1)(1− tg5∘tg2∘)

Таким образом,

         ∘         ∘   ∘         ∘      ∘    ∘
tgα = -(tg7∘−-1)(1− tg5-t∘g2)∘-= 1−-tg7∘ =-tg45-−∘tg7-∘ = tg38∘
     −(tg 7 +1)(1− tg5 tg2 )  1+ tg7   1+ tg 45 tg7

Следовательно, α= 38∘ .

Ответ:

 38∘

Ошибка.
Попробуйте повторить позже

Задача 3#87411

Дан остроугольный треугольник ABC  , меньший угол которого ∠ABC = 40∘ . Внутри треугольника выбрана такая точка D  , что

                ∘                     ∘
∠BAC + ∠ADB = 180 и 2∠ACB + ∠DBA = 180.

Через точку C  провели прямую, параллельную прямой AD  , она пересекла прямую BD  в точке E.  Биссектрисы углов ∠ABD  и ∠CAD  пересекаются в точке F.  Найдите угол ∠DF E.

Источники: СПБГУ - 2024, 11.3 (см. olympiada.spbu.ru)

Показать ответ и решение

Положим для краткости ∠ABF  =φ  , тогда ∠DBF = φ  и ∠DBA  =2φ  . По условию

                             ∘
2∠ACB  +2φ =2∠ACB + ∠DBA = 180

и, значит, ∠ACB  =90∘− φ  .

          ∘                  ∘         ∘
∠BAD  =180 − ∠DBA − ∠ADB = 180 − 2φ− (180 − ∠BAC )=∠BAC  − 2φ.

Следовательно,

∠DAF  = ∠DAC-= ∠BAC--− ∠BAD = φ
          2          2

и четырехугольник AF DB  вписанный.

Таким образом, ∠ADF = ∠ABF = φ  , значит, треугольник AFD  равнобедренный и, в частности, F A= FD  . Поскольку AF − биссектриса угла ∠CAD  , а прямые AD  и CE  параллельны, ∠ACE  =∠CAD  =2φ =∠ABE  . Следовательно, четырехугольник AECB  является вписанным

PIC

В силу вписанности

                       ∘     ∠AF-D
∠AED  =∠AEB  =∠ACB  =90 − φ=   2  ,

стало быть, точка F  является центром описанной окружности треугольника ADE  и, значит, ∠DF E = 2∠DAE  . Осталось заметить, что

∠DAE  =180∘− AED − ∠ADE = 180∘− ∠ACB − ∠BAC = ∠ABC = 40∘,

откуда получаем ответ ∠DF E =80∘ .

Ответ:

 80∘

Ошибка.
Попробуйте повторить позже

Задача 4#87412

Решите уравнение в целых числах

 2   2     n
m + k = 2024 + 33

Источники: СПБГУ - 2024, 11.4 (см. olympiada.spbu.ru)

Показать ответ и решение

Числа m  и k  являются целыми числами, следовательно, каждое из чисел m2  и k2  являются целыми, а значит, и их сумма   2  2
m  +k  является целыми числом, таким образом, число    n
2024 +33  также является целым, т.е. число     n
2024  целое, откуда n ≥0  .

_________________________________________________________________________________________________________________________________________________________________________________

Пусть n≥ 2  . Тогда     n
2024 + 33  делится на 11, поскольку каждое из чисел 2024 и 33 кратно 11, но не делится на  2
11  , т.к. первое слагаемое кратно  2
11  , а второе — нет.

Пусть число x  дает остаток 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 при делении на 11, тогда число  2
x  дает соответственно остаток 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1 при делении на 11. Докажем, что если хотя бы одно из чисел m  и k  не делится на 11, то и число  2   2
m  +k  не делится на 11.

Предположим обратное, тогда сумма остатков чисел m2  и k2  равна 11, следовательно, ровно одно из чисел m2  и k2  даёт четный остаток при делении 11, а значит, соответствующий квадрат даёт остаток 0 или 4 при делении на 11, но тогда второй остаток равен 0 или 7, что невозможно. Таким образом, каждое из чисел m  и k  кратно 11, следовательно, каждое из чисел m2  и k2  кратно 112  , таким образом, m2 +k2  кратно 112  , но 2024n +33  не кратно 112  .

_________________________________________________________________________________________________________________________________________________________________________________

Тогда n = 0  или n =1.

Пусть n= 1  . Тогда 2024n+ 33 =2024+ 33 =2057= 112 ⋅7  , следовательно, m2+ k2  кратно 112  , а значит, как мы показали выше, каждое из чисел m  и k  кратно 11. Пусть m = 11a  , k =11b  , где a  и b  являются целыми числами, следовательно, a2+ b2 =17  . Легко убедиться, что всеми решениями (a,b)  данного уравнения являются неупорядоченные пары (±1,±4).  Следовательно, все пары решений (m,k)  это (±11,±44)  , (±11,±44)  .

Пусть n= 0  . Тогда 2024n+ 33 =1 +33= 34  . Если каждое из чисел m  и k  не превосходит по модулю 4, то сумма их квадратов не превосходит 32, следовательно, наибольшее из чисел m  и k  по модулю не меньше 5. С другой стороны, если какое-то из чисел по модулю больше 5, то его квадрат не меньше 36, что невозможно. Таким образом, в паре чисел (m,k)  хотя бы одно равно 5 по модулю, тогда второе равно 3 по модулю. Тем самым, мы показали, что все пары решений (m,k)  есть (±5,±3)  , (±3,±5)  .

Ответ:

 (0;±3;5),(0;±3;− 5),(0;±5;3),(0;±5;−3),

(1;±11;44),(1;±11;−44),(1,±44;11),(1,±44;−11)

Ошибка.
Попробуйте повторить позже

Задача 5#87413

В стране 400  городов. Некоторые из них соединены авиалиниями, а некоторые нет. Известно, что для любых 200  городов найдётся  300  пар городов, не соединённых авиалиниями. Какое наибольшее количество авиалиний может быть в стране?

Источники: СПБГУ - 2024, 11.5 (см. olympiada.spbu.ru)

Показать ответ и решение

Рассмотрим граф, в котором города — вершины, а авиалинии — рёбра. Рассмотрим подграф A  из 200  вершин с наибольшим количеством рёбер и подграф B  из оставшихся 200  вершин.

Пусть вершина X  из подграфа A  соединена с наименьшим количеством вершин в этом подграфе (x  вершин). Предположим, что в подграфе B  имеется вершина Y  , которая соединена с хотя бы x+ 1  вершиной из подграфа A  . В таком случае вершину Y  можно переместить в подграф A  вместо вершины X  и в нём будет больше авиалиний, что противоречит выбору подграфа A  . Следовательно, любая вершина из подграфа B  связана не более чем с x  вершинами из подграфа A  .

Значит, между этими подграфами не более 200x  рёбер. Внутри же каждого из этих подграфов не более 200⋅199
--2--− 300 =19600  рёбер. Значит, всего в графе не более 2⋅19600+ 200x= 39200 +200x.

Как известно, x  — это наименьшая степень вершины в подграфе A  . Значит, в A  не менее 200x
--2 = 100x  рёбер. С другой стороны, в этом подграфе не более 19600  рёбер, откуда x≤ 196  . Теперь мы можем оценить количество рёбер в графе: 39200 +200x≤ 78400  .

_________________________________________________________________________________________________________________________________________________________________________________

Приведём пример на 78400  рёбер. Разбиваем города на 50  групп по 8  городов. Внутри групп между городами авиалиний нет, а между городами из разных групп — есть.

Пусть выбрано 200  городов так, что из них a1  город из первой группы, a2  из второй, ...  , a50  — из 50  -й. Тогда количество пар, не соединённых авиалиниями, будет не менее

a (a − 1) a (a − 1)     a (a  − 1) (a2+ a2 +...+ a2)− (a +a + ...+ a )  (a2+ a2 +...+ a2)− 200
-1--12---+ -2-22---+ ...+ -50--502----= --1--2-------50-2-1---2-------50-= --1--2----2--50-----

по неравенству между средним квадратическим и средним арифметическим

(a21-+a22+-...+-a250)−-200-≥ 800−-200= 300
         2               2

Мы показали, что для произвольного подграфа в примере выполняется условие задачи.

Ответ: 78400
Рулетка
Вы можете получить скидку в рулетке!