Тема Всесиб (Всесибирская открытая олимпиада школьников)

Всесиб - задания по годам .01 Всесиб 2015 и ранее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб (всесибирская открытая олимпиада школьников)
Разделы подтемы Всесиб - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#38862

Докажите, что в любой компании из 13  человек либо найдётся человек, знающий четырёх других, либо найдутся четверо, попарно не знакомых. Знакомства обоюдны — если А знает Б, то и Б знает А.

Источники: Всесиб-2015, 11.4 (см. sesc.nsu.ru)

Показать ответ и решение

Будем говорить в терминах графа — либо найдётся вершина степени хотя бы 4  , либо независимое множество размера 4  . Пусть степень каждой вершины не больше 3  . Выберем человека A  , он не знаком хотя бы с 9  другими, поэтому достаточно найти независимое множество размера 3  на них. Теперь выберем произвольную вершину B  из этих 9  . Она соединена не более, чем с тремя из них, потому достаточно показать, что среди оставшихся 5  найдутся две, между которыми нет ребра, что очевидно, поскольку любая из них имеет степень меньше 4  , то есть в качестве C  берём любую из пяти, а в качестве D  ту, с которой C  не знаком.

Ответ:

что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 2#47237

Периметр треугольника ABC  равен 24  cм, а отрезок, соединяющий точку пересечения его медиан с точкой пересечения его биссектрис, параллелен стороне AC  . Найти длину AC  .

Источники: Всесиб-2013, 11.3 (см. sesc.nsu.ru)

Показать ответ и решение

Первое решение.

PIC

Обозначим через AK  медиану из вершины A  , через M  - точку пересечения медиан ABC  , через I - точку пересечения его биссектрис AA1,BB1,CC1  . Проведём через K  прямую параллельно AC  , пересекающую биссектрису BB1  в точке P  - её середине. По теореме Фалеса PI :IB1 =KM  :MA = 1:2,  поэтому BI :IB1 = 2:1  . По свойству биссектрис AI  и CI  в треугольниках ABB1  и CBB1  имеем AB :AB1 = BI :IB1 = CB :CB1 =2 :1  . Отсюда AC = 12(AB + BC)= 13(AB +BC + AC)= 8.

Второе решение.

PIC

Пусть AA2,BB2  — биссектрисы, BB1,CC1  — медианы, BH  — высота, P  — периметр △ABC.  Пусть I =AA2 ∩BB2,Z = BB1∩ CC1  , тогда IZ ∥ AC.  Отсюда следует

                                  3
ρ(I,AC)= r= ρ(Z,AC ) =⇒   ρ(C1,AC )= 2r

ρ(C1,AC)= 3r  =⇒   ρ(B,AC )= BH =2ρ(C1,AC )= 3r
         2

Из отношения высот получим

SAIC-  -r⋅AC--  1
SABC = BH ⋅AC = 3

S     r ⋅AC   AC    1           P
SAABICC--=-P-⋅r- =-P- = 3  =⇒  AC = 3-= 8
Ответ:

 8

Ошибка.
Попробуйте повторить позже

Задача 3#91383

Даны две пересекающиеся окружности радиусов √2-  см и √17  см, расстояние между центрами которых равно 5 см.

PIC

Прямая пересекает эти окружности в точках A,B,C  и D  так, как это показано на рисунке, причём длины отрезков AB,BC  и CD  равны. Найти длину этих отрезков.

Показать ответ и решение

Обозначим длины искомых отрезков за 2x  , отметим центры P  и Q  окружностей и опустим из них перпендикуляры P S  и QT  на прямую AB  , обозначим их длины за p  и q  соответственно.

PIC

По теореме Пифагора имеем:

 2   2    2   2       2       2
x + p = 2,x + q = 17, 16x + (q − p) = 25.

Отсюда

16x2 +(∘17-− x2− ∘2-− x2)2 = 25,

преобразуем это уравнение в биквадратное

  4    2
48x − 23x − 25= 0.

Находим

       √ ----
x2 = 23-±--5329-= 23±-73= − 25,1,
       96       96      48

поэтому единственный положительный корень x= 1  . Следовательно, длины отрезков AB,BC  и CD  равны 2 см.

Ответ: 2 см
Рулетка
Вы можете получить скидку в рулетке!