ОММО - задания по годам → .05 ОММО 2013
Ошибка.
Попробуйте повторить позже
Решите систему
Источники:
Подсказка 1!
Давайте внимательнее посмотрим на первое уравнение. Слева квадраты обратных чисел, справа максимум 2. Вспомним, что a + 1/a >= 2! То есть у нас должно достигаться равенство двойке.
Подсказка 2!
Попробуйте использовать это и получить теперь условия на sin(y), tg(x), cos(z)!
Первое решение.
Вычтем из обеих частей первого уравнения число и оценим обе части
равенство может быть только в случае
Таким образом, система из условия сводится к
Решая каждое из уравнений, приходим к ответу:
______________________________________________________________________________________________________________________________________________________
Второе решение.
В первом уравнении системы правая часть не превосходит в силу области значений синуса, а левая часть по неравенству о средних
для двух положительных (ни квадрат тангенса, ни квадрат котангенса не могут быть равны нулю, иначе один из них будет не определён)
чисел не меньше
При этом должно достигаться равенство. Это возможно тогда и только тогда, когда
и
С учётом полученного второе уравнение системы равносильно
Итого ,
и
(здесь важно писать разные буквы для целых параметров, иначе у
переменных появляется дополнительная линейная зависимость, которой быть не должно).
Ошибка.
Попробуйте повторить позже
Единичный куб повёрнут на
вокруг прямой, проходящей через середины противоположных рёбер
и
.
Найдите объём общей части исходного куба и повёрнутого.
Подсказка 1
Итак, для начала надо внимательно разобраться с получающейся фигурой. Удобно начать построение с поворота рёбер AD и B₁C₁. Похожа ли общая часть кубов на какую-то известную нам фигуру? Если нет, то подумайте как можно её разбить на составляющие.
Подсказка 2
Работать с такого типа фигурой можно через сумму объёмов составляющих её частей. Или же через разность: вычитая удобные части из фигуры, содержащей искомую. Рассмотрим способ через сумму — наш многогранник удачно разбивается на параллелепипед и две правильные четырёхугольные пирамиды.
Подсказка 3
Найти все нужные длины нам поможет Пифагор: рассмотрите одну из граней исходного куба и возвышающуюся над ней часть нового куба. Аккуратный счёт поможет вам узнать, где пересекутся рёбра нового и исходного кубов.
Подсказка 4
Также, с помощью Пифагора мы сможем отыскать и все рёбра искомого многогранника. Осталось лишь отыскать объёмы всех составных частей и сложить их. Задача убита!
Пусть и
— середины
и
, а куб после поворота переходит в
. Общая часть будет объединением
прямоугольного параллелепипеда
и двух симметричных правильных четырёхугольных пирамид
и
, найдём их объёмы.
Сторона основания пирамиды равна стороне квадрата, то есть единице. Далее оба квадрата симметричны относительно ,
потому
. Из
имеем
— боковая сторона пирамиды. Отсюда легко найти её
высоту, которая равна
, тогда объём пирамиды равен
.
Поскольку (
, которая по доказанному образует углы
со сторонами), то
,
, как стороны квадрата, отсюда объём параллелепипеда
.
В итоге объём сечения .
Ошибка.
Попробуйте повторить позже
В выпуклом четырёхугольнике прямые
и
перпендикулярны, а длина отрезка, соединяющего середины диагоналей
и
, равна
. Найдите длину отрезка, соединяющего середины сторон
и
.
Источники:
Подсказка 1
Пусть K,L,M,N-середины AB,AC,CD,BD. Тогда, к примеру в треугольнике ABC у нас есть две середины сторон. На проведение какого(каких?) доп.построения это может намекать?
Подсказка 2
Отлично, мы провели 4 средние линии. Но ведь средняя линия параллельна стороне треугольника! Тогда что можно сказать про ч-угольник KLMN , используя условие, что AD перпендикулярно BC?
Подсказка 3
Да, то что KLMN-прямоугольник. Дело остается за малым, ведь осталось лишь применить одно свойство прямоугольника, чтобы найти KM
Первое решение.
Пусть — середины
соответственно. Заметим, что
, как средние линии в
. Аналогично
. Отсюда
— параллелограмм, в котором
в силу
, то
есть это прямоугольник, в котором диагонали равны. Осталось заметить, что его диагоналями и будут два отрезка из
условия.
Второе решение.
Пусть — середины
соответственно. Тогда, во-первых,
а во-вторых,
По условию дано
и
а найти надо
так что
Ошибка.
Попробуйте повторить позже
На плоскости задана точка . Рассматриваются различные равносторонние треугольники
, такие что
Какое
максимальное значение может принимать длина отрезка
Источники:
Счётный способ, подсказка 1
Заметим, что если зафиксировать треугольник PAB, то картинка определяется единственным образом. Как его зафиксировать?
Счётный способ, подсказка 2
Конечно, можно ввести лишь три его стороны, но лучше ввести еще и два угла, чтобы счет проходил легче(а с помощью теорем синусов или косинусов, мы всегда сможем связать углы со сторонами при желании).
Счётный способ, подсказка 3
Выразите сторону AB по теореме косинусов и угол PBA через стороны треугольника PAB и угол APB. Выразили? Кажется, все готово, чтобы считать PC.
Счётный способ, подсказка 4
Попробуйте привести выражение PC к такому виду, чтобы только одно слагаемое было переменным, а все остальное являлось константой.
Геометрический способ, подсказка 1
На картинке есть угол 60 градусов и два равных отрезка исходящих из него(AB и AC). Это очень сильно намекает на поворот в этой точке.
Геометрический способ, подсказка 2
Да, нужно сделать поворот на 60 градусов, переводящий точку B в точку C. Это удобно, так как точка P переедет в точку P’,при этом APP’-равносторонний и треугольники AP’C и APB равны. Какой вывод о длине PC можно сделать?
Геометрический способ, подсказка 3
Да, по неравенству треугольника PC<=5. Осталось лишь привести пример, но как? Попробуйте делать те же действия, как вы получили оценку, но в обратном порядке, не забывая о том, когда эта оценка достигается(расположение точек P,P’,C)
Первое решение.
Докажем, что длина не больше . Для этого рассмотрим поворот с центром в точке
на
таким образом, что
переходит в
.
Точка
переходит в
, а поскольку
и
, то
, откуда
по
неравенству треугольника.
Для построения примера сначала построим правильный , затем на продолжении
отметим
. Наконец, построим
правильный треугольник
на отрезке
. Остаётся показать, что выполнено
, но для этого достаточно рассмотреть поворот
на
в обратную сторону
, тогда отрезок
перейдёт в
.
Второе решение.
Просто посчитаем. Пусть ,
. Тогда из треугольника
из теоремы косинусов
следует
Теперь из треугольника по теореме косинусов
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра , при каждом из которых уравнение
имеет хотя бы один целый корень?
Источники:
Подсказка 1!
Относительно х видим какое-то непонятное уравнение 4-ой степени, а относительно а? Квадратное уравнение! Давайте посчитаем дискриминант и поймем, при каких х существуют решения?
Подсказка 2!
Верно, чтобы дискриминант показывал наличие корней, мы хотим чтобы у нас он был больше или равен нулю. Вспомните, что х целый по условию и найдите, чему он может быть равен!
Запишем дискриминант относительно
Решения есть только при (не забываем, что
целый). Подставим
, получим единственное решение
. При
имеем
. При
.
Ошибка.
Попробуйте повторить позже
Пусть
Найдите для
Источники:
Подсказка 1
Нам нужно посчитать значение какой-то суммы. Наверное, считать по отдельности каждый член будет не очень удобно. Может, попытаемся разбить эту сумму на пары?
Подсказка 2
Само условие намекает нам рассмотреть f(0)+f(1), (1/n)+f((n-1)/n), т.е. суммы f(x)+f(1-x). Чему равна эта сумма?
Подсказка 3
С функцией f(n)=9ⁿ/(9ⁿ+3) неудобно работать, поэтому давайте поделим числитель и знаменатель на 9ⁿ: f(n)=1/(1+3/9ⁿ). Тогда f(1-n)=1/(1+9ⁿ/3). Посмотрите, чему равна сумма f(n)+f(1-n) и доведите решение до конца!
При слагаемых будет
— чётное количество, поэтому их можно разбить на
пар вида
, посмотрим на
сумму в такой паре
Отсюда сумма и
(количество пар).
Ошибка.
Попробуйте повторить позже
Докажите, что число можно представить в виде произведения трех натуральных чисел, больших 1.
Подсказка 1
Число из условия очень похоже на многочлен, а какие делители точно есть у многочлена вида a^n +1?
Подсказка 2
Если n - нечетно, то a^n+1 делится на a+1. Попробуем таким способов найти хотя бы 1 делитель!
Подсказка 3
Заметим, что 2^2014+1 делится 2^38+1. выходит, теперь у нас есть 2 делителя. А на какие делители можно разбить 2^38+1?
Напомним, что при нечётном число
делится на
при любом натуральном
Так как то взяв
получаем, что число
делится на
Взяв , получаем, что
делится на
В итоге
причём каждый из трёх множителей в разложении это натуральное число больше единицы (у двух данных сократимых дробей, очевидно, числитель больше знаменателя).