Тема ОММО (Объединённая Межвузовская Математическая Олимпиада)

ОММО - задания по годам .05 ОММО 2013

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Разделы подтемы ОММО - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#31195

Решите систему

{ tg2x+ ctg2x= 2sin2y;
  sin2y +cos2 z = 1.

Источники: ОММО-2013, номер 5, (см.olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1!

Давайте внимательнее посмотрим на первое уравнение. Слева квадраты обратных чисел, справа максимум 2. Вспомним, что a + 1/a >= 2! То есть у нас должно достигаться равенство двойке.

Подсказка 2!

Попробуйте использовать это и получить теперь условия на sin(y), tg(x), cos(z)!

Показать ответ и решение

Первое решение.

Вычтем из обеих частей первого уравнения число 2 =2tgx⋅ctg x  и оценим обе части

            2      2
0≤ (tgx − ctgx)= 2(sin y− 1)≤ 0

равенство может быть только в случае

            2      2
0= (tgx − ctgx)= 2(sin y− 1)= 0

Таким образом, система из условия сводится к

(| tgx= ctgx
{ sin2y = 1
|( 1+ cos2z = 1.

Решая каждое из уравнений, приходим к ответу:

(|  x= π+ πk,k∈ ℤ
{  y = 4π+ π2n,n∈ ℤ
|(  z = 2π+ πt,t∈ ℤ.
      2

______________________________________________________________________________________________________________________________________________________

Второе решение.

В первом уравнении системы правая часть не превосходит 2  в силу области значений синуса, а левая часть по неравенству о средних для двух положительных (ни квадрат тангенса, ни квадрат котангенса не могут быть равны нулю, иначе один из них будет не определён) чисел не меньше 2tgx⋅ctgx = 2.  При этом должно достигаться равенство. Это возможно тогда и только тогда, когда sin2 y = 1  и tg2x= ctg2x =1.

С учётом полученного второе уравнение системы равносильно cos2z = 0.

Итого x = π+ πk,k∈ ℤ
    4   2  , y = π+ πn,n∈ ℤ
   2  и z = π+ πt,t∈ ℤ
   2  (здесь важно писать разные буквы для целых параметров, иначе у переменных появляется дополнительная линейная зависимость, которой быть не должно).

Ответ:

 (π + πk;π +πn;π +πt); n,k,t∈ ℤ
 4   2 2     2

Ошибка.
Попробуйте повторить позже

Задача 2#38690

Единичный куб ABCDA   B C D
       1 1 1 1  повёрнут на 90∘ вокруг прямой, проходящей через середины противоположных рёбер AD  и B C
  1 1  . Найдите объём общей части исходного куба и повёрнутого.

Источники: ОММО-2013, номер 10, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Итак, для начала надо внимательно разобраться с получающейся фигурой. Удобно начать построение с поворота рёбер AD и B₁C₁. Похожа ли общая часть кубов на какую-то известную нам фигуру? Если нет, то подумайте как можно её разбить на составляющие.

Подсказка 2

Работать с такого типа фигурой можно через сумму объёмов составляющих её частей. Или же через разность: вычитая удобные части из фигуры, содержащей искомую. Рассмотрим способ через сумму — наш многогранник удачно разбивается на параллелепипед и две правильные четырёхугольные пирамиды.

Подсказка 3

Найти все нужные длины нам поможет Пифагор: рассмотрите одну из граней исходного куба и возвышающуюся над ней часть нового куба. Аккуратный счёт поможет вам узнать, где пересекутся рёбра нового и исходного кубов.

Подсказка 4

Также, с помощью Пифагора мы сможем отыскать и все рёбра искомого многогранника. Осталось лишь отыскать объёмы всех составных частей и сложить их. Задача убита!

Показать ответ и решение

PIC

Пусть S  и S1  — середины AD  и B1C1  , а куб после поворота переходит в A′B′C ′D′A′1B′1C′1D′1  . Общая часть будет объединением прямоугольного параллелепипеда EFGHE1F1G1H1  и двух симметричных правильных четырёхугольных пирамид SEFGH  и S1E1F1G1H1  , найдём их объёмы.

PIC

Сторона основания пирамиды равна стороне квадрата, то есть единице. Далее оба квадрата симметричны относительно AB1C1D  , потому             E1√F1  √1-
E1B1 = F1B1 = 2 =   2  . Из △E1B1S1  имеем       ∘-1--1  √3
E1S1 =  2 + 4 = 2  — боковая сторона пирамиды. Отсюда легко найти её высоту, которая равна 1
2  , тогда объём пирамиды равен 1    1  1
3 ⋅1 ⋅2 = 6  .

PIC

Поскольку A1E1 = A1E = 1− 1√2  (EE1 ⊥E1F1  , которая по доказанному образует углы 45∘ со сторонами), то EE1 = √2 − 1  , EF = EH = 1  , как стороны квадрата, отсюда объём параллелепипеда √2 − 1  .

В итоге объём сечения 16 ⋅2+ √2 − 1= √2-− 23  .

Ответ:

 √2-− 2
     3

Ошибка.
Попробуйте повторить позже

Задача 3#39610

В выпуклом четырёхугольнике ABCD  прямые AD  и BC  перпендикулярны, а длина отрезка, соединяющего середины диагоналей  BD  и AC  , равна 2013  . Найдите длину отрезка, соединяющего середины сторон CD  и AB  .

Источники: ОММО-2013, номер 4, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Пусть K,L,M,N-середины AB,AC,CD,BD. Тогда, к примеру в треугольнике ABC у нас есть две середины сторон. На проведение какого(каких?) доп.построения это может намекать?

Подсказка 2

Отлично, мы провели 4 средние линии. Но ведь средняя линия параллельна стороне треугольника! Тогда что можно сказать про ч-угольник KLMN , используя условие, что AD перпендикулярно BC?

Подсказка 3

Да, то что KLMN-прямоугольник. Дело остается за малым, ведь осталось лишь применить одно свойство прямоугольника, чтобы найти KM

Показать ответ и решение

PIC

Первое решение.

Пусть K,L,M, N  — середины AB,AC,CD,BD  соответственно. Заметим, что KL  ∥NM ∥ BC  , как средние линии в △ABC, △BDC  . Аналогично KL ∥MN  ∥AD  . Отсюда KLMN  — параллелограмм, в котором KL ⊥ ML  в силу BC ⊥ AD  , то есть это прямоугольник, в котором диагонали равны. Осталось заметить, что его диагоналями и будут два отрезка из условия.

Второе решение.

Пусть K,L,M, N  — середины AB,AC,CD,BD  соответственно. Тогда, во-первых,

−−→         D + B  A + C  −A−→D − −−B→C
NL =L − N =--2-- −--2-- =----2---,

а во-вторых,

                           −−→   −−→
−K−M→ =M − K = D-+C-− A-+B-= AD-+-BC.
               2      2       2

По условию дано

           −−→ 2 −−→ 2  −−→  −−→
NL2 =−N−→L2 = AD--+BC--−-2AD-⋅BC-= 20132
                   4

и

BC ⊥ AD   ⇐⇒   −−A→D ⋅−−B→C =0,

а найти надо

             ┌│ -------------------
     ∘ −−→--  │∘ −−A→D2 +−B−→C2 − 2−−→AD⋅−B−→C   −−→ 2
KM  =  KM2 =   ---------4--------= NL  ,

так что

KM = NL = 2013.
Ответ:

 2013

Ошибка.
Попробуйте повторить позже

Задача 4#39611

На плоскости задана точка P  . Рассматриваются различные равносторонние треугольники ABC  , такие что PA =2,PB = 3.  Какое максимальное значение может принимать длина отрезка P C?

Источники: ОММО-2013, номер 7, (см. olympiads.mccme.ru)

Подсказки к задаче

Счётный способ, подсказка 1

Заметим, что если зафиксировать треугольник PAB, то картинка определяется единственным образом. Как его зафиксировать?

Счётный способ, подсказка 2

Конечно, можно ввести лишь три его стороны, но лучше ввести еще и два угла, чтобы счет проходил легче(а с помощью теорем синусов или косинусов, мы всегда сможем связать углы со сторонами при желании).

Счётный способ, подсказка 3

Выразите сторону AB по теореме косинусов и угол PBA через стороны треугольника PAB и угол APB. Выразили? Кажется, все готово, чтобы считать PC.

Счётный способ, подсказка 4

Попробуйте привести выражение PC к такому виду, чтобы только одно слагаемое было переменным, а все остальное являлось константой.

Геометрический способ, подсказка 1

На картинке есть угол 60 градусов и два равных отрезка исходящих из него(AB и AC). Это очень сильно намекает на поворот в этой точке.

Геометрический способ, подсказка 2

Да, нужно сделать поворот на 60 градусов, переводящий точку B в точку C. Это удобно, так как точка P переедет в точку P’,при этом APP’-равносторонний и треугольники AP’C и APB равны. Какой вывод о длине PC можно сделать?

Геометрический способ, подсказка 3

Да, по неравенству треугольника PC<=5. Осталось лишь привести пример, но как? Попробуйте делать те же действия, как вы получили оценку, но в обратном порядке, не забывая о том, когда эта оценка достигается(расположение точек P,P’,C)

Показать ответ и решение

PIC

Первое решение.

Докажем, что длина не больше 5  . Для этого рассмотрим поворот с центром в точке A  на 60∘ таким образом, что B  переходит в    C  . Точка P  переходит в P′ , а поскольку AP = AP′ = 2  и ∠P AP′ = 60∘ , то PP′ = 2  , откуда P C ≤ P′C+ P′P = PB + P′P = 5  по неравенству треугольника.

Для построения примера сначала построим правильный △AP P′ , затем на продолжении PP′ отметим C :CP′ = 3  . Наконец, построим правильный треугольник ABC  на отрезке AC  . Остаётся показать, что выполнено PB = 3  , но для этого достаточно рассмотреть поворот на 60∘ в обратную сторону C → B  , тогда отрезок P′C = 3  перейдёт в PB  .

Второе решение.

Просто посчитаем. Пусть AB = c,PB = a,P A= b,∠AP B =φ  , ∠PBA = β  . Тогда из треугольника ABP  из теоремы косинусов следует

c2 =a2+ b2− 2abcosφ; sinβ = bsinφ; cosβ = a−-bcosφ-.
                         c               c

Теперь из треугольника CP B  по теореме косинусов

                 ( π   )                     (1      √3    )
CP2 =c2+ a2− 2accos 3 + β = 2a2+b2− 2abcosφ− 2ac 2cosβ−-2-sinβ  =
                                                  (√ -          )
= 2a2+b2 = 2abcosφ− aca−-bcosφ-+ac√3bsin-φ= a2+ b2+ 2ab--3sinφ − 1 cosφ =
              (    )   c           c                2      2
= a2+ b2+ 2absin φ− π  =⇒ φ− π = π=⇒ φ = 2π.
                  6        6   2       3
Ответ:

 5

Ошибка.
Попробуйте повторить позже

Задача 5#43118

Найдите все значения параметра a  , при каждом из которых уравнение

  4        2
2x − 7ax +5a = 0

имеет хотя бы один целый корень?

Источники: ОММО-2013, номер 8, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1!

Относительно х видим какое-то непонятное уравнение 4-ой степени, а относительно а? Квадратное уравнение! Давайте посчитаем дискриминант и поймем, при каких х существуют решения?

Подсказка 2!

Верно, чтобы дискриминант показывал наличие корней, мы хотим чтобы у нас он был больше или равен нулю. Вспомните, что х целый по условию и найдите, чему он может быть равен!

Показать ответ и решение

Запишем дискриминант относительно a

      2    4   2       2
D =49x − 40x  =x (49 − 40x )≥0

Решения есть только при x∈ {0,±1} (не забываем, что x  целый). Подставим x= 0  , получим единственное решение a= 0  . При x =1  имеем a= 7±3= {1,2}
    10     5 . При x= −1  a∈{− 1,− 2}
        5 .

Ответ:

 0;±2;±1
   5

Ошибка.
Попробуйте повторить позже

Задача 6#49765

Пусть

          (1 )   (2 )       (n-− 1)
Sn = f(0)+ f n + f n  + ...+ f   n   +f(1)

Найдите S2013  для

        x
f(x)= -9x---
      9 + 3

Источники: ОММО-2013, номер 6, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Нам нужно посчитать значение какой-то суммы. Наверное, считать по отдельности каждый член будет не очень удобно. Может, попытаемся разбить эту сумму на пары?

Подсказка 2

Само условие намекает нам рассмотреть f(0)+f(1), (1/n)+f((n-1)/n), т.е. суммы f(x)+f(1-x). Чему равна эта сумма?

Подсказка 3

С функцией f(n)=9ⁿ/(9ⁿ+3) неудобно работать, поэтому давайте поделим числитель и знаменатель на 9ⁿ: f(n)=1/(1+3/9ⁿ). Тогда f(1-n)=1/(1+9ⁿ/3). Посмотрите, чему равна сумма f(n)+f(1-n) и доведите решение до конца!

Показать ответ и решение

При n= 2013  слагаемых будет n+ 1= 2014  — чётное количество, поэтому их можно разбить на 1007  пар вида α,1− α  , посмотрим на сумму в такой паре

          3
f(α) =1− 9α+-3

          1−α
f(1− α)= 991−α+-3 = 9+-93⋅9α = 9α3+-3 =1− f(α)

Отсюда сумма f(α)+ f(1− α) =1  и S2013 = 1007  (количество пар).

Ответ:

 1007

Ошибка.
Попробуйте повторить позже

Задача 7#77848

Докажите, что число 22014+1  можно представить в виде произведения трех натуральных чисел, больших 1.

Подсказки к задаче

Подсказка 1

Число из условия очень похоже на многочлен, а какие делители точно есть у многочлена вида a^n +1?

Подсказка 2

Если n - нечетно, то a^n+1 делится на a+1. Попробуем таким способов найти хотя бы 1 делитель!

Подсказка 3

Заметим, что 2^2014+1 делится 2^38+1. выходит, теперь у нас есть 2 делителя. А на какие делители можно разбить 2^38+1?

Показать доказательство

Напомним, что при нечётном n  число an+ 1  делится на a+ 1  при любом натуральном a.

Так как 2014=2 ⋅19⋅53,  то взяв     2⋅19
a= 2  ,n= 53,  получаем, что число 2014
2   +1  делится на  2⋅19
2   + 1.

Взяв    2
a= 2,n= 19  , получаем, что  2⋅19
2   +1  делится на  2
2 + 1= 5.

В итоге

 2014     22014+ 1 238+1
2   + 1= -238+-1-⋅--5---⋅5,

причём каждый из трёх множителей в разложении это натуральное число больше единицы (у двух данных сократимых дробей, очевидно, числитель больше знаменателя).

Рулетка
Вы можете получить скидку в рулетке!