Тема ОММО (Объединённая Межвузовская Математическая Олимпиада)

ОММО - задания по годам .01 ОММО 2009

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#42965Максимум баллов за задание: 7

Дана трапеция с основаниями 1  и 4  и площадью S  . Найдите площадь треугольника, образованного диагоналями и меньшим основанием трапеции.

Источники: ОММО-2009, номер 4, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Так как нам дали площадь всей трапеции, то понятно, что площадь маленького треугольника составляет какую-то часть площади трапеции. Если попробовать посчитать просто площадь треугольника, то нам неизвестна его высота. А может получиться её выразить через S? Что можно сказать про пару треугольников, образованных диагоналями и основаниями трапеции?

Подсказка 2

Верно, ведь они подобны, и к тому же мы знаем их коэффициент подобия. Но тогда подобны и все их элементы, например, высоты. Как тогда можно выразить высоту трапеции через высоту треугольника?

Подсказка 3

Ага, выходит, что высота трапеции – это пять высот треугольника. Тогда осталось только выразить её через S и подставить в площадь треугольника.

Показать ответ и решение

Пусть это трапеция ABCD, AD = 4,BC =1,AC ∩BD = E.  Проведём через точку E  высоту трапеции F G:

PIC

Из подобия △BEC ∼ △AED  получаем

EF :EG = BC :AD =1 :4,

так что

EF = x  =⇒   EG =4x  =⇒   SCEB = EF-⋅BC = x
                                 2        2

S = SABCD = BC-+AD-⋅F G= 1+-4 ⋅5x= 25SCEB
              2           2
Ответ:

-S
25

Ошибка.
Попробуйте повторить позже

Задача 2#49763Максимум баллов за задание: 7

Пусть

     x
f(x)= 3 +2

Найдите значение функции

f(◟..◝.f◜(f◞(x))...)
 2009

в точке x= 4.

Источники: ОММО-2009, номер 5, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Линейная функция, какая легкотня! Хотя погодите, похоже все не так просто... Давайте попробуем посмотреть на f(f(x)) или же сразу посмотреть на f(f(4))...

Подсказка 2

f(f(x))=(x+24)/9. Ничего красивого. Давайте подставим 4, может, хоть тогда что-нибудь увидим: f(f(4))=28/9=(27+1)/9. Хммм, а ведь f(4)=10/3=(9+1)/3. Какое предположение напрашивается?

Подсказка 3

Верно, f(f(..f(4)...))=(3ⁿ⁺¹+1)/3ⁿ. Убедитесь в этом с помощью индукции и вычислите ответ!

Показать ответ и решение

Первое решение.

Посмотрим, что происходит при применении f  к некоторому числу. Заметим, что         x     x−3
f(x)− 3= 3 − 1 = 3  , т. е. каждое применение    f  сокращает расстояние от числа до 3  в три раза. Для x= 4  оно было равно 1  , а значит, после 2009  применений f  это расстояние станет равным  −2009
3  . Соответственно, само число станет равным     −2009
3 +3    .

Второе решение.

f(x)= 2+ x∕3;
f(f(x))= 2+ 2∕3 +x∕9;
f(f(f(x)))= 2+ 2∕3+2∕9+ x∕27;
...
               (             2008)    2009
 f◟(..◝.f◜(f◞(x))...)= 2 +2∕3+ ⋅⋅⋅+ 2∕3    + x∕3   .
  2009

По формуле для суммы геометрической прогрессии, последнее выражение равно

   1− 1∕32009
2⋅ -1−-1∕3--+ x∕32009 =3 +(x− 3)∕32009

Подставляя x= 4  , получаем ответ.

Замечание. Формально мы доказываем по индукции, что f(...f(f(x))...)= xn-+ 2n∑−11-
◟--◝n◜-◞        3    k=0 3k  . База для n= 1  очевидна, а переход

              f◟(...◝◜f(f◞(x))...)       x    ∑n  1
f◟(..◝.◜f(f◞(x))...)= ---n--3----- +2= 3n+1 + 2  3k
  n+1                                 k=0

тривиален. Остаётся подставить n= 2009  и упростить формулу суммы геометрической прогрессии               -4--   (13)2009−1      −2009
f(◟..◝.f◜(f◞(4))...)= 32009 +2⋅   13− 1  = 3+3
 2009

Ответ:

 3+ 3−2009

Ошибка.
Попробуйте повторить позже

Задача 3#88527Максимум баллов за задание: 7

Третий, четвёртый, седьмой и последний члены непостоянной арифметической прогрессии образуют геометрическую прогрессию. Найдите число членов этой арифметической прогрессии.

Подсказки к задаче

Подсказка 1

Так-с, что же делать? Введём разность арифметической прогрессии и знаменатель геометрической, запишем все уравнения из условия.

Подсказка 2

Теперь задачка свелась просто к работе с системой уравнения. Какие мы знаем классические трюки, когда видим перед собой систему уравнений? Правильно, можно попробовать вычесть из одного уравнения другое. Такими методами можно быстро найти знаменатель геом. прогрессии.

Показать ответ и решение

Пусть a
 n  n  -ый член арифметической прогрессии, q  — знаменатель геометрической прогрессии. По условию

( a = a ⋅q
|{  4   3
|( a7 = a4⋅q
  an =a7⋅q

Пусть d  — разность арифметической прогрессии, тогда имеем

(|  a3+ d=a3 ⋅q
{  a3+ 4d =(a3+ d)⋅q
|(  a + (n− 7)⋅d= a ⋅q
    7            7

Вычитая из второго уравнения первое, получаем

3d= dq

Так как прогрессия непостоянная, то можем поделить на d⁄= 0  и получить

q = 3

Подставляя это значение в систему, получаем

a3 = d a7 = 9d-
    2 ,    2

a +(n− 7)⋅d= 3a
 7            7

(n− 7)⋅d= 29d-
           2

Поделив на d⁄= 0  , имеем

n− 7= 9

n =16
Ответ: 16
Рулетка
Вы можете получить скидку в рулетке!