Тема МВ / Финашка (Миссия выполнима. Твоё признание — финансист!)

Миссия выполнима - задания по годам .10 Миссия выполнима 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист!)
Разделы подтемы Миссия выполнима - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#81368

Среди людей, не говорящих по-английски, 4%  говорят по-французски, а среди людей, не говорящих по-французски, 20%  говорят по-английски. Во сколько раз число людей, не говорящих по-французски, больше числа людей, не говорящих по-английски?

Источники: Миссия выполнима - 2024, 11.1 (см. www.fa.ru)

Показать ответ и решение

Пусть x  — число людей, не говорящих по-английски, а y  — число людей, не говорящих по-французски. Тогда из условия людей, не говорящих ни на одном из языков: 96%  от x  , а с другой стороны 80%  от y  .

Откуда 0.96x = 0.8y  , то есть y
x = 1.2  .

Ответ: 1,2

Ошибка.
Попробуйте повторить позже

Задача 2#81371

Каким наибольшим может быть значение выражения A +B  , если A  и B  – числа, удовлетворяющие следующей системе неравенств

( 3A +5B ≤11
|{
|( 4A +3B ≤10
  7A +4B ≤18

Источники: Миссия выполнима - 2024, 11.2 (см. www.fa.ru)

Показать ответ и решение

Обозначим за S =A +B  , тогда систему можно переписать в виде:

( 5S − 2A ≤11
|{
|( 3S +A ≤10
  4S +3A ≤18

Представим первое неравенство, как A ≥ 5S−11,
      2  тогда получаем

(|  5S−-11-≤A
{  11S2−11≤ 3S+ A≤ 10
|(  23S2−33≤ 4S+ 3A≤ 18
     2

Откуда получаем оценку

      (                )
S ≤min  2⋅10-+11,18⋅2+-33- = 31
          11       23      11

При этом равенство достигается в точке области

   17    14
A= 11,B =11

(являющейся точкой пересечения прямых 3A +5B = 11,4A+ 3B =10  ).

Ответ:

 31
11

Ошибка.
Попробуйте повторить позже

Задача 3#81373

Для каждого натурального числа n  положим

     -(−3)n--
p(n)= 3n+ 317

Вычислите сумму

p(1)+ p(2)+ ...+p(33)

Источники: Миссия выполнима - 2024, 11.3 (см. www.fa.ru)

Показать ответ и решение

Заметим, что для 1≤ n≤ 17

              -(−3)n--  -(−-3)34−n--  -(−1)n-- (−1)n317−n      n
p(n)+p(34 − n)= 3n+ 317 + 334−n+ 317 = 1+ 317−n + 1+ 317−n =(−1)

Тогда

                                         (−1)17  − 1
p(1)+ p(2)+ ...+ p(33)= (− 1)1+ (− 1)2+ ...(−1)16+ --2-- =-2-
Ответ:

− 1
 2

Ошибка.
Попробуйте повторить позже

Задача 4#81377

Длина ребра куба ABCDA ′B′C′D′ равна 1. Найдите радиус сферы, проходящей через точку B  и касающейся прямых AD,AA′ и  ′ ′
A B .

Источники: Миссия выполнима - 2024, 11.4 (см. www.fa.ru)

Показать ответ и решение

Введём декартову систему координат с центром в точке A  , ось абсцисс — луч AD  , ось ординат — луч AA ′ , ось аппликат — луч AB  .

Пусть   ′
O — проекция центра сферы на грань    ′ ′
AA B B  куба. Определим ее местоположение. Так как сфера касается прямых   ′  ′′
AA ,A B и проходит через точку B  , то расстояние от точки  ′
O до прямых   ′
AA и  ′ ′
A B и точки B  одинаково (обозначим его r  ). Тогда  ′
O лежит на луче  ′
A B  , который является биссектрисой угла    ′ ′
AA B . Осталось учесть условие, что центр сферы касается прямой AD  , то есть нужно проверить, что расстояние от центра до прямой AD  совпадает с радиусом сферы OB  .

Заметим, что есть два случая расположения точки  ′
O (на рисунке показаны разными цветами):

PIC

Случай 1: точка O ′ лежит на диагонали A ′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-− r)2  , откуда r =2− √2  . Значит, центр сферы O  имеет координаты (x1;√2-− 1;2− √2)  .

Расстояние до прямой AD  равно ∘(√2−-1)2-+(2−-√2)2  . То есть радиус OB = ∘(√2-− 1)2+(2−-√2)2 = ∘9−-6√2.

Случай 2: точка O ′ лежит на продолжении луча A′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-+r)2  , откуда r =2+ √2  . Значит, центр сферы O  в этом случае имеет координаты (x ;−√2-− 1;2+ √2)
  2  .

Расстояние до прямой AD  равно ∘--√-----2-----√--2
 (−  2− 1) + (2+ 2)  . То есть радиус      ∘ --√----2-----√--2- ∘ ---√--
OB =   (−  2− 1)+ (2+  2) =   9+6  2.

Ответ:

 ∘9-±-6√2

Ошибка.
Попробуйте повторить позже

Задача 5#81378

Решите уравнение

    2x−-1      x-+3-
arctg x+ 2 + arctg3x− 1 = x

Источники: Миссия выполнима - 2024, 11.5 (см. www.fa.ru)

Показать ответ и решение

Посчитаем

       2x-− 1     -x+-3
tg(arctg x+ 2 +arctg3x − 1)=

   2x−-1  x+3-
= -x+22x−+1-3x−x1+3-=
  1− x+2-⋅3x−1-

  7x2+ 7
= -x2+1-= 7

Тогда для корня уравнения tg(x)= 7  . При этом так как   π          π
− 2 < arctg(t)< 2  , получаем − π < x< π  .

Откуда получаем, что кандидатами в корни могут быть только arctg 7  и arctg 7− π  . Покажем, что они подходят: для этого достаточно проверить, что при подстановке этих значений левая часть примет тот же знак, что и правая. (Так как левая часть всегда равна arctg 7  или arctg7− π  )

Для x= arctg7  имеем

arctg 2x-− 1 =arctg(2−-5-)>0,
     x+ 2          x+ 2

так как 2> 5> --5-
   3  x +2  для x= arctg7  в силу того, что arctg7> arctg√3 = π> 1
                3  .

А также

    x-+3-      1   -10--
arctg3x− 1 = arctg(3 + 9x − 3)> 0

Для x= arctg7− π  имеем

    2x − 1          5
arctg-x+-2 =arctg(2− x+-2)<0,

так как

2< --5-  ⇐⇒   1> x+ 2> 2π − π+ 2= 2− 3π >0
   x+ 2                 5            5

А также

arctg x-+3-= arctg(1 +-10-)< 0,
    3x− 1      3  9x − 3

потому что

1-< --1--  ⇐⇒   x< 0,3 − 9x< 30 (x> π − π > −3)
30  3− 9x                         3

Значит, оба этих значения — корни.

Ответ:

arctg7  и arctg7 − π

Ошибка.
Попробуйте повторить позже

Задача 6#81379

Два треугольника пересекаются по шестиугольнику ABCDEF  , в котором

                ∘        ∘       ∘        ∘
∠A = ∠B =∠C = 100 ,∠D =130 ,∠E = 140,∠F =150

Найдите углы этих треугольников.

Источники: Миссия выполнима - 2024, 11.6 (см. www.fa.ru)

Показать ответ и решение

Случай 1  (стороны треугольника - тройки несмежных сторон):

PIC

В таком случае все углы треугольников легко находятся, как   ∘     ∘         ∘              ∘
180 − (180 − α)− (180 − β)=α +β − 180 , где α,β  - два соседних угла шестиугольника.

Тогда получаем, что углы красного треугольника равны   ∘  ∘  ∘
20 ,70 ,90 , а углы синего -  ∘   ∘   ∘
20,50,110 .

Случай 2  (один из углов шестиугольника совпадает с углом треугольника):

PIC

Заметим, что это единственное возможное положение в этом случае. Углы синего треугольника равны 150∘ ; 180∘− (180∘− ∠A )− (180∘ − ∠B )=20∘ и 10∘ .

Углы красного треугольника будут равны 130∘;  180∘ − (180∘− ∠B)− (180∘− ∠C)= 20∘ и 30∘ .

Ответ:

 20∘,50∘,110∘ и 20∘,70∘,90∘ ; или 10∘,20∘,150∘ и 20∘,30∘,130∘

Ошибка.
Попробуйте повторить позже

Задача 7#81380

При каких значениях параметра b  существует прямая, касающаяся графика функции f(x)=x4+ bx2+x  в двух точках? Для каждого такого значения параметра b  найдите уравнение соответствующей прямой.

Источники: Миссия выполнима - 2024, 11.7 (см. www.fa.ru)

Показать ответ и решение

Условие, что прямая вида y =kx+ m  касается графика y = f(x)  означает равенство функций и равенство производных в точке касания:

({ 4   2
 x + bx  +x =kx+ m
(4x3+ 2bx+ 1= k

Нас интересует, когда эта система имеет ровно 2  корня. Заметим, что система эквивалентна

(
{ x4 +bx2 = (k − 1)x+ m
( 4x3+ 2bx= k− 1

То есть должна существовать прямая y =(k− 1)x +m  , которая касается графика y = x4+ bx2  .

При b≥ 0  ее производная 4x3+ 2bx  монотонная функция, а значит, 4x3+ 2bx= k− 1  имеет не более одного решения, тогда и вся система имеет не более одного решения.

При b< 0  можно заметить, что касательные в точках локального минимума        ∘---
x1,2 =±  −-b
         2  (нашли их как корни производной   3
4x + 2bx =0  ) имеют одинаковый коэффициент наклона 0  , а также в этих точках значение функции совпадает в силу чётности. Тогда прямая             b2   b2    b2
y =x41+ bx21 = 4-− 2-= −4  будет касательной сразу к двум точкам (только к двум точкам, потому что в точке x= 0  касательная y = 0  ; в других же точках коэффициент наклона касательной не 0  ).

Возвращаясь к изначальным обозначениям, получаем               2
k − 1 =0;m =− b
             4  . То есть искомая касательная это        2
y = x− b
      4  .

Ответ:

при b <0  , прямая y =x− b2
       4

Ошибка.
Попробуйте повторить позже

Задача 8#81381

Про натуральные числа X,Y  и Z  известно, что они различны и не превосходят 100. Мы можем выписать любую последовательность {a1,...,a100} , содержащую все натуральные числа от 1 до 100. Какое наименьшее число последовательностей нужно выписать, чтобы среди них наверняка имелась такая, в которой два или три подряд идущих члена принадлежат множеству {X;Y ;Z}?

Источники: Миссия выполнима - 2024, 11.8 (см. www.fa.ru)

Показать ответ и решение

Сначала покажем, что 24  последовательностей не хватит.

Построим граф, вершины которого это числа от 1  до 100  , а рёбра между вершинами a  и b  проводятся, если в одной из последовательностей числа a  и b  были подряд идущими членами.

Так как суммарно во всех 24  -x последовательностях каждое число будет соседом не более 2 ⋅24 =48  других чисел, степень каждой вершины в этом графе не превосходит 48  .

Тогда выберем в графе две несмежные вершины x,y.  Так как степень каждой из них не более 48  , а всего вершин 100  , то найдется хотя бы 1  вершина z  , которая не соседствует с обеими вершинами x,y  . Тогда множество чисел {x,y,z} не будет удовлетворять условию задачи (ни в одна последовательности нет двух или трех подряд идущих членов, которые содержатся в {x,y,z} )

_________________________________________________________________________________________________________________________________________________________________________________

Пример на 25  последовательностей опишем пример в терминах графа.

Разделим 100  чисел на две равные группы: например, 1,2,3,...,50  и 51,52,...,100  .

Отдельно расставим первые 50  чисел в 25  последовательностей длиной 50  , чтобы любые 2  числа были соседями в хотя бы одной из 25  последовательностей. (То есть на языке графов: нужно покрыть 25  путями полный граф на 50  вершинах). И аналогично поступим со второй группой 50  чисел, а потом просто “склеим” последовательности. Например, если первая последовательность в первой группе это 1,2,...,50  , а первая последовательность во второй - это 51,52,...,100  , то склеиваем и получаем 1,2,...,50,51,52,...,100  .

Опишем построение 25  последовательностей длиной 50  . Поместим вершины в правильный многоугольник и покроем полный граф на этом подмножестве вершин 25  последовательностями (то есть путями проходящими по всем вершинам), идущими зигзагом через многоугольник с поворотом каждого пути на кратный -π--
n− 1  угол. На картинке пример построения 4  последовательностей, для 8  чисел:

PIC

Теперь поясним, почему после "склейки"полученные 25  последовательностей будут удовлетворять условию. Какие бы числа X,Y,Z  , мы ни взяли, либо два из них будут среди чисел от 1  до 50  , либо среди чисел от 50  до 100  . Тогда два числа из одно группы соединены ребром, то есть являются соседями в одной из 25  последовательностей. Этого мы и добивались.

Ответ: 25
Рулетка
Вы можете получить скидку в рулетке!