Тема КФУ (олимпиада Казанского Федерального Университета)

КФУ - задания по годам .04 КФУ 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Разделы подтемы КФУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#65457

Функция f  для всех действительных x,y  удовлетворяет неравенствам

f(x+ y) ≥f(x)+f(y),  f(x)≥ x

Найдите все такие функции f(x)  .

Показать ответ и решение

Заметим, что f(x)= f(x+0)≥ f(x)+ f(0)  , то есть 0≥ f(0)  . С другой стороны f(0)≥ 0  по условию, а значит, f(0) =0.

Теперь заметим, что f(0)≥ f(x)+ f(−x)≥ 0,  а значит, f(x)+f(−x)= 0.

Теперь запишем неравенство f(− x)≥− x.  Зная, что f(−x)= −f(x),  получаем неравенство − f(x)≥ −x,  то есть x ≤f(x)≤x.

Следовательно, f(x)= x.

Ответ:

 f(x)= x

Ошибка.
Попробуйте повторить позже

Задача 2#76417

Пусть p  — нечётное простое число. Найдите все целые x  и y  такие, что

 3   3   3  2     2
x + y + p =x y+ xy

Источники: КФУ-2022, 11.1 (см. kpfu.ru)

Показать ответ и решение

Перепишем уравнение в виде x3 +y3− x2y− xy2 = −p3  и разложим левую часть на множители:

     ( 2      2)            3
(x +y) x − xy+ y − (x+ y)xy =− p

          2    3
(x+ y)(x− y) = −p

Таким образом, числа x+y  и (x− y)2  являются степенями простого числа p  . Но (x − y)2  — чётная степень p,  значит, множитель x +y  — это нечётная степень p,  и так как x+ y ≤ 0,  то

{ x+ y = −p      { x+ y = −p3
  x− y = ±p или     x− y = ±1

В первом случае имеем

x= 0,y =− p или x =−p,y = 0,

Во втором

− x= − 1 (p3− 1),y =− 1(p3+ 1) или x= − 1(p3+1),y = − 1 (p3− 1)
      2            2               2           2

Так как p  — нечётное, то числа x  и y  в этих наборах — целые.

Ответ:

 (0;− p),(−p;0),(− 1 (p3− 1);− 1(p3+1)),(− 1(p3+1);− 1(p3− 1))
             2         2          2         2

Ошибка.
Попробуйте повторить позже

Задача 3#76418

Сумма нескольких натуральных чисел, в записи каждого из которых участвуют только цифры 3  и 0,  равна 777...77  (2022  семёрки). Какое наименьшее число слагаемых может быть в этой сумме?

Источники: КФУ-2022, 11.3 (см. kpfu.ru)

Показать ответ и решение

Пусть M = 777...77= a +a + ...+ a ,
              1  2       n  где числа a
 k  записываются только нулями и тройками. Сумма цифр числа M  равна 2022⋅7  и делится на 3.  Тогда

1
3M = 25◟9259◝◜...259◞= c1+ c2+...+cn,
     2022цифры

где числа ck = 1ak
    3  записываются только нулями и единицами. Поскольку 1M
3  содержит девятку, наименьшее количество слагаемых в этой сумме равно 9.  Эти слагаемые легко находятся для числа 259:259 =2 ⋅111+ 3⋅11+4 ⋅1.  Умножая на три, получим: 777= 2⋅333 +3⋅33+ 4⋅3.  Умножая на степени 1000 и складывая, получим

77◟72.◝0.◜22.77◞= 2⋅3◟332.◝0..◜22333◞+3⋅3◟30332.◝◜02.1.033◞+4 ⋅3◟0032.◝◜02..0003◞
Ответ: 9

Ошибка.
Попробуйте повторить позже

Задача 4#76419

В неравнобедренном треугольнике ABC  провели высоту BH,  медиану BM  и биссектрису BL.  Точки P  и Q  — ортогональные проекции вершин A  и C  на прямую BL.  Докажите, что точки M, H,P  и Q  лежат на одной окружности.

Источники: КФУ-2022, 11.4 (см. kpfu.ru)

Показать доказательство

Рассмотрим без ограничения общности AB < BC.  Тогда точка P  лежит внутри треугольника ABC  , а точка Q  вне его.

Первое решение.

Построим описанную окружность треугольника ABC  , тогда продолжение биссектрисы BL  пересечет ее в точке D  , являющейся серединой дуги AC  . Тогда AD = CD  , то есть медиана DM  равнобедренного треугольника ADC  будет также и высотой.

PIC

Так как ∠AMD  = ∠AQD = 90∘ , то получим, что ∠CAD = ∠MQL  . Так как ∠BPC = ∠BHC = 90∘ аналогично получаем, что ∠P HL =∠CBD  .

Но углы ∠CBD  = ∠CAD  равны, как вписанные углы, опирающиеся на одну дугу.

В итоге ∠PHL = ∠CBD = ∠CAD = ∠MQL  . Но из равенства углов ∠P HL =∠MQL  следует, что точки M,H,P,Q  лежат на одной окружности.

Второе решение.

Обозначим через A′ и C′ точки пересечения прямых AP  и BC,CQ  и AB  соответственно.

PIC

Поскольку BP  — биссектриса и         ′       ′
BP ⊥ AA ,BQ ⊥ CC ,  треугольники     ′
BAA и    ′
BCC — равнобедренные, и значит,        ′
AP = PA и        ′
CQ = QC .

В треугольнике   ′
AA C  точки P  и M  — середины сторон    ′
AA и AC,  поэтому P M  — средняя линия, и значит, PM ∥BC.  Аналогично,       ′
MQ ∥BC .  Следовательно, ∠AMQ  = ∠BAC.  Возможны два случая:

a) ∠BAC  ≤90∘.  Точки A,H,P  и B  лежат на одной окружности с диаметром AB,  поэтому четырёхугольник AHP B  — вписанный. Значит,

∠HP Q = 180∘− ∠HP B = ∠BAC = ∠HMQ

Следовательно, точки H, P,M  и Q  лежат на одной окружности.

б)         ∘
∠BAC > 90 ,  тогда точки A,H,B  и P  лежат на одной окружности с диаметром AB,  поэтому четырёхугольник AHBP  — вписанный. Значит,

∠HP Q =180∘− ∠HPB = 180∘− ∠HAB  =∠BAC  =∠HMQ

Следовательно, точки H, P,M  и Q  лежат на одной окружности.

Ошибка.
Попробуйте повторить позже

Задача 5#106014

В каждую клетку таблицы 21×22  вписано число 1  или − 1.  Под каждым столбцом записано произведение всех чисел столбца, а рядом с каждой строкой — произведение чисел строки. Какое наименьшее неотрицательное значение может принимать сумма всех этих произведений?

Показать ответ и решение

Сначала рассмотрим “крайнюю” ситуацию. Если во всех клетках таблицы числа равны + 1,  то и все произведения равны + 1,  а их общая сумма равна 21+ 22=43.

Если мы сменим знак в одной из клеток, то изменится знак в произведении чисел одной строки и одного столбца. Значит, сумма всех произведений изменится на величину ± 2±2,  то есть это изменение может равняться 4,0  или − 4.  Таким образом, после замены знаков в нескольких клетках таблицы значение суммы может измениться лишь на слагаемое, кратное 4.

Взяв за основу таблицу, заполненную числами + 1,  и меняя знаки в соответствующих клетках (чтобы придти к исходной таблице), мы получим значение суммы 43 − 4k.  Наименьшее неотрицательное значение выражения 43 − 4k,  очевидно, равно 3,  и оно достигается при целом k =10.

Осталось привести пример таблицы, для которой указанное значение суммы произведений равно 3.  Расставим сначала во всех клетках таблицы 21× 22  числа + 1,  а затем заменим знак +  на − у 10  чисел, стоящих, например, на диагонали, идущей из левого верхнего угла в нижний. Для полученной таблицы сумма всех произведений равна 43− 10⋅4 =3.

Ответ:

 3

Рулетка
Вы можете получить скидку в рулетке!