Тема КФУ (олимпиада Казанского Федерального Университета)

КФУ - задания по годам .05 КФУ 2023

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Разделы подтемы КФУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#68962

У Маши есть копилка, куда она каждую неделю кладет купюру в 50 или 100 рублей. В конце каждых 4 недель она выбирает из копилки купюру наименьшего достоинства и дарит сестренке. Через год оказалось, что сестренке она отдала 1250 рублей. Какое минимальное количество денег могло накопиться за это время у нее самой?

Источники: КФУ-2023, 11.1 (см. kpfu.ru)

Подсказки к задаче

Подсказка 1

Для начала давайте посчитаем, сколько раз за год Маша будет дарить купюры сестре?

Подсказка 2

Верно, 13 раз! А теперь вспомним, что суммарно она подарила 1250 рублей, при том, что каждый раз она дарила либо 100, либо 50 рублей! Тогда, сколько раз она подарила сестре 50 рублей?

Подсказка 3

Верно, она подарила 50 рублей ровно один раз! А в какой временной период это могло произойти, учитывая, что нам нужно минимизировать сумму в копилке?

Подсказка 4

Да, чтобы сумма была минимальна, она должна была отдать 50 рублей в последний — 13-ый раз! Тогда, какая минимальная сумма может остаться у неё в копилке?

Показать ответ и решение

Назовем 4-недельный промежуток “месяцем”, таких “месяцев” в году 13  . Если бы все подаренные Машей купюры были сторублевыми, сестра получила бы 1300  рублей. Значит, Маша двенадцать раз дарила по 100  рублей и один — 50. Если в какой-то “месяц” Маша отдала 100  р., значит, и в копилке у неё были только сотни. То есть за эти 12  “месяцев” она оставила себе 12⋅300= 3600  р.

Итак 50  -рублевки могли появиться у Маши только в один месяц из 13  . Если за “месяц” в копилку попала только одна, она ее подарила в конце месяца, так что ее "доход"был по-прежнему 300  р.

Если в какой-то “месяц” Маша откладывает не менее двух 50  -рублевых купюр, она отдает их сестре в течение последовательных “месяцев”, что противоречит условию. Исключение - случай, когда они все пришли в 13  -м “месяце”, тогда она не успеет их отдать. Итак, в этом случае первые 12  “месяцев” Маша получала по 300  рублей, а в последний могла положить в копилку от нуля до трех 50  -рублевых купюр, то есть недобрать до 300  рублей максимум 150  р.

Ответ: 3750 рублей

Ошибка.
Попробуйте повторить позже

Задача 2#68968

а) Может ли для некоторых a,b  оказаться, что

log2a ⋅log2b =log2ab?

б) Может ли для некоторых a,b  оказаться, что

log2a +log2b =log2(a+ b)?

в) Могут ли при каких-то a,b  выполняться оба равенства?

Источники: КФУ-2023, 11.2 (см. kpfu.ru)

Подсказки к задаче

Подсказка 1

Вспомните, как выглядят свойства логарифма, вас в этой задаче пытаются немного запутать!

Подсказка 2

У нас две неизвестные и одно уравнение (в пунктах а и б по отдельности). Обычно когда переменных больше, чем уравнений, то у нас есть решения и их довольно много.

Подсказка 3

Чтобы придумать пример, можно взять a равным какому-то "хорошему" числу и попытаться решить уравнение относительно b. Таким образом вы найдёте примеры для пунктов а и б.

Подсказка 4

Теперь давайте подумаем про пункт в. У нас уже два уравнения и две неизвестные. Обычно это означает, что если решения и есть, то их мало, а может их и вовсе нет. Поэтому тут метод подбора уже скорее всего не сработает, нужно попытаться решить систему из двух уравнений...

Подсказка 5

У вас вряд ли получится решить эту систему так, как вы обычно решаете логарифмические уравнения, скорее всего, понадобятся оценки и понимание монотонности для доказательства того, что решений нет. Самый топорный способ: выразить a через b, подставить в другое уравнение, получить уравнение относительно b и показать (например, с помощью производной), что у него нет решений. Однако можно решить и более красиво через оценки...

Показать ответ и решение

Ясно, что числа a  и b  положительны.

a) Условие можно переписать в виде log2(a)⋅log2(b)= log2(a)+ log2(b)  . Если log2(a) ⁄=1  , то           log2a--
x =log2b = log2a−1  ,     x
b= 2  . Например, при a = 4  имеем log2a =2  ,     2--
x = 2−1 =2  , b= 4  .

б) Равенство сводится к соотношению ab= a+ b  . Например, при a = 4  получаем, что    -a-  4
b= a−1 = 3

в) Условие вида xy = x+ y  можно переписать в виде (x− 1)(y− 1)= 1  . Предположим, что пункты а) и б) одновременно выполняются. Заданные неравенства можно переписать в виде

{
   (log2(a)− 1)(log2(b)− 1)= 1
   ab =a+ b

Из первого равенства следует, что log a− 1
  2  и log b− 1
  2  имеют одинаковый знак. То есть либо они оба положительны (тогда a >2,b> 2  ), либо оба отрицательны (a< 2,b< 2  ). В силу положительности чисел a  и    -a-
b= a−1  имеем a> 1  .

Если a> 2

         1            1
a− 1 >1;a−-1 < 1;b= 1+ a− 1-< 2

Если 1< a< 2

0< a− 1< 1;a1− 1-> 1;b= 1+ a1−-1 > 2

Пришли к противоречию.

Ответ: а) Да; б) Да; в) Нет

Ошибка.
Попробуйте повторить позже

Задача 3#68975

Обозначим min-x−1= a;max-x−1-= b.
   x2+1       x2+1  Найдите, чему равны минимум и максимум функций:

    x3− 1
а)  x6+1-

б)  xx+2+11-

Источники: КФУ-2023, 11.3 (см. kpfu.ru)

Подсказки к задаче

Пункт а), Подсказка 1

Понятно, что если изначальное выражение обозначить за f(x), то теперь у нас выражение f(x³). Изменится ли минимум и максимум такой функции?)

Пункт б), Подсказка 1

Теперь попробуйте рассмотреть выражение f(-x). Оно будет почти таким же, как наше выражение, и задача решится)

Показать ответ и решение

Введём обозначение x−1-= f(x).
x2+1

a) Имеем x3−1    3
x6+1 = f(x )  . Величина  3
x  пробегает все числовые значения, значит,   3
f(x )  принимает такие же значения, как f(x).

б) Имеем        −x−1    x+1
f(−x)= x2+1-= −x2+1  , то есть x+1
x2+1 = −f(−x)  , значит, эта функция принимает значения от − b  до − a.

Ответ:

а) a,b

б) − b,−a

Ошибка.
Попробуйте повторить позже

Задача 4#68990

Многогранник ABCDA  B C D
      1 1 1 1  изображен в ортогональной проекции на плоскость ABCD.

PIC

Докажите, что такой многогранник невозможен.

Источники: КФУ-2023, 11.4 (см. kpfu.ru)

Подсказки к задаче

Подсказка 1

У нас на картинке дополнительно нарисованы точки пересечения A₂, B₂, C₂ и D₂. Что их всех связывает?

Подсказка 2

Они получены как пересечение прямых из плоскости ABCD и прямых из плоскости A₁B₁C₁D₁. Тогда где должны лежать все эти точки?

Подсказка 3

На общей для этих плоскостей прямой! А теперь внимательно смотрим на рисунок)

Показать доказательство

PIC

Прямые AB  и A1B1  пересекаются в точке A2  , лежащей в обеих плоскостях, ABCD  и A1B1C1D1  , то есть на их общей прямой. То же верно для точек B2,C2,D2  получающихся как пересечения одноименных рёбер. Значит, все эти точки должны лежать на одной прямой, что не выполняется.

Если зафиксировать, например, точки B1,C1,D1  , то можно построить изображение вершины A1  (на рисунке это точка A1)  , которое не совпадает с изображением точки A  на проекции.

Ошибка.
Попробуйте повторить позже

Задача 5#68994

Рассмотрим алгебраическое выражение F (a,...,x),  содержащее переменные, скобки и операции умножения и вычитания. Числовые константы не используются. Заменим один из знаков операции на ⊥,  другой — на ⊳⊲.  Назовем полученное выражение «формулой». Например, формулой будет выражение (a⊳⊲b)⊥ c,  причем один из знаков обозначает разность, а другой - умножение.

а) существует ли формула, которая при любых значениях переменных (и любом из смыслов знаков) дает значение 0?

б) существует ли формула, которая при любых значениях переменных дает значение 1 ?

Источники: КФУ-2023, 11.5 (см. kpfu.ru)

Подсказки к задаче

Пункт а), Подсказка

Попробуйте придумать такую формулу, в которой будет содержаться только одна переменная. Для этого надо вспомнить, когда a*a (где * - операция) дает ноль в разных случаях)

Пункт б), Подсказка

А теперь подумайте про четность чисел, и как она меняется или не меняется в зависимости от операций и от самих чисел) Вдруг можно подобрать такие числа что никогда не будет 1...

Показать ответ и решение

a) Рассмотрим формулу A= a ⊥a  . Если ⊥ - вычитание, то выражение тождественно равно 0  . Если ⊥ - умножение, то A= 0  при a =0  . Поэтому выражение N =(a⊥ a)⊳⊲ (a ⊥a)  равно 0  при любом смысле знаков ⊥ и ⊳⊲  . Действительно, если ⊥ - вычитание, то N = 0⋅0= 0  . Если же ⊥ - умножение, то ⊳⊲  - вычитание, тогда N = a⋅a− a⋅a= 0  .

б) Предположим, что переменным a,b,...  приданы четные значения. Тогда и a⊳⊲b  , и a⊥ b  , также являются чётными. Поэтому при таких значениях переменных любая формула имеет чётное значение.

Ответ: а) Да; б) Нет
Рулетка
Вы можете получить скидку в рулетке!