Тема КФУ (олимпиада Казанского Федерального Университета)

КФУ - задания по годам .01 КФУ до 2020

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Разделы подтемы КФУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#96506

Функция f(x)  задана на всей числовой оси, причём для всех x  выполняются неравенства:

f(x+ 2018)≤ f(x)≤ f(x+ 2019)

a) Придумайте хотя бы одну функцию f(x)  , удовлетворяющую этим условиям.

б) Докажите, что функция f(x)  — периодическая.

Показать ответ и решение

а) Возьмём f(x)=|sin(πx)| . Тогда

f(x+ 2018)= f(x)= f(x+ 2019)

б) Представим x+ 2019  в виде (x +1)+ 2018  и применим первое неравенство из условия задачи, взяв в качестве x  выражение x +1  . Тогда f((x +1)+ 2018)≤ f(x +1)  , и поскольку f(x)≤f(x+ 2019)  , имеем

f(x)≤ f(x+ 1)

Подставив в это неравенство x+1  вместо x  , получим f(x+ 1)≤f(x+ 2)  , и значит,

f(x)≤ f(x+ 1)≤ f(x+ 2)

Повторяя эти рассуждения, получим

f(x)≤ f(x+1)≤ ...≤ f(x +2018)

Но по условию f(x+ 2018)≤ f(x)  . Значит, в приведённой цепочке все неравенства обращаются в равенства, то есть

f(x)= f(x+ 1)= f(x+ 2) =...

Другими словами, функция f(x)  имеет период T =1  .

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#96505

Докажите, что в любой момент времени на поверхности Солнца есть точка, которую можно наблюдать не более чем с трех планет из восьми известных.

Показать доказательство

Формализуем планеты и Солнце как сферы, причём радиус сферы Солнца больше любого другого радиуса. Выберем две планеты и проведем через центры этих планет и Солнца плоскость α  .

Точки в которых к сфере Солнца проходят касательные плоскости, параллельные α,  будем называть полярными. Полярные точки не видны с планет, центры которых находятся в плоскости α  , поскольку радиус Солнца больше радиуса любой из планет. Помимо планет, центры которых лежат в плоскости α  , осталось не более шести планет, поэтому с одной из сторон от плоскости α  лежит не более чем три центра планет.

Полярная точка, расположенная в том полупространстве, где находится не более трех центров планет, видна разве что с этих планет, поэтому она видна не более чем с трех планет.

Ошибка.
Попробуйте повторить позже

Задача 3#88475

Сеть дорог соединяет n  населенных пунктов. Из каждого пункта выходит не более 3  дорог. Если между какими-либо двумя пунктами нет дороги, то есть третий пункт, соединенный с ними обоими. Каково максимальное возможное значение n?

Показать ответ и решение

Будем называть населенные пункты точками. Возьмем любую точку A.  Она соединена не более, чем с тремя точками B,C,D.  Любая другая точка X  должна быть соединена с одной из точек B,C,D  (поскольку она не соединена с A  ). Но каждая из них уже соединена с A,  так что может быть соединена не более чем с двумя другими точками, Следовательно, общее число точек не более 1+ 3+ 3⋅2= 10.

Пример, показывающий, что 10  точек возможно можно построить, например, так. Обозначим точки A,B,C,D,E,F,G,H,I,J.  Проведем дороги AB,AC,AD,BE,BF, CG,CH,DI,DJ,EH,EJ,FG,F I,GJ  и HI.

Ответ:

 10

Рулетка
Вы можете получить скидку в рулетке!