Тема ШВБ (Шаг в будущее)

ШВБ - задания по годам .08 ШВБ 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Разделы подтемы ШВБ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#67595

Найдите все варианты троек (x;y;z)  , при которых выполняется уравнение

∘---------  ∘---------  ∘---------------
 |2x|+ x− 6+  |2y|⋅|2− x|+ |2z|+ |x − 2|⋅|x+ 6|=0

Источники: ШВБ-2022, (см. olymp.bmstu.ru)

Показать ответ и решение

Так как каждое слагаемое неотрицательное, уравнение равносильно следующей системе

( |2x|+ x− 6= 0
|{
|( |2y|⋅|2 − x|= 0
  |2z|+ |x− 2|⋅|x+ 6|= 0

                                   [ x= 2
|2x|+x− 6= 0  ⇐⇒   2x= ±(6− x)  ⇐⇒     x= −6

                  [
                    y = 0
|2y|⋅|2− x|=0  ⇐ ⇒    x= 2

                                                 (
                         { |2z|= 0                |{ z[ =0
|2z|+ |x− 2|⋅|x+ 6|= 0  ⇐⇒                      ⇐⇒   |   x =2
                           |x− 2|⋅|x+6|= 0        (   x =− 6

Если x= 2,  то y  — любое, а z = 0

Если x= −6,  то y = 0, z = 0

Итого получаем тройки (− 6,0,0);(2,y ∈ ℝ,0).

Ответ:

 (−6,0,0);

(2,y,0), y ∈ ℝ

Ошибка.
Попробуйте повторить позже

Задача 2#74502

В лаборатории имеются колбы двух размеров (объемом V  и объемом V∕2  ) в суммарном количестве 100 штук, причем колб каждого размера не менее трех. Лаборант поочередно случайно выбирает три колбы, и первую из них полностью заполняет 80-процентным раствором соли, вторую полностью заполняет 50-процентным раствором соли, а третью колбу полностью заполняет 20 процентным раствором соли. Затем он сливает содержимое этих трех колб в одну чашу и определяет процентное содержание соли в ней. При каком наименьшем количестве больших колб N  событие «процентное содержание соли в чаше находится в пределах от 45%  до 55%  включительно» будет случаться реже события «при случайном бросании двух симметричных монет выпадает орел и решка (в любом порядке)»? Ответ обосновать.

Источники: ШВБ - 2022, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

Если N  — имеющееся количество больших колб в лаборатории, N =3,4,...,  97,  то n =100− N  — имеющееся количество малых колб в лаборатории, n= 3,4,...,97.  Для события A = { содержание соли в чаше находится в пределах от 45%  до 55%  включительно } необходимо найти такое наименьшее N,  что вероятность       1
P(A)< 2.

Мысленно перенумеруем все имеющиеся в лаборатории колбы — присвоим им личные номера от 1 до 100. И тогда равновероятными исходами этого эксперимента будут упорядоченные тройки различных личных номеров последовательно выбираемых лаборантом колб: ω =(i1,i2,i3),ij ∈{1,2,3,...,100},ij ⁄= ik,j,k= 1,2,3.  Общее количество таких исходов равно 100⋅99⋅98.

Вычислим теперь количество благоприятных исходов для появления события A.  Рассмотрим следующие случаи, определяемые размерными типами выбранных колб.

1.

Лаборант выбирает три большие колбы — тип [Б, Б, Б]. Тогда процентное содержание соли в чаше в результате описанных манипуляций лаборанта окажется равным величине:

(0,8V-+0,5V-+-0,2V)100 =50% ∈[45%;55%]
        3V

Такой выбор благоприятствует появлению события A.  Количество элементарных исходов данного типа, очевидно, равно N ⋅(N − 1)⋅ (N − 2).

2.

Лаборант выбирает три маленькие колбы — тип [м, м, м]. Процентное содержание соли в чаше:

(0,8V∕2+-0,5V∕2+0,2V-∕2)100-= 50% ∈ [45%;55% ]
         3V∕2

Такой выбор благоприятствует появлению события A.  Количество исходов в этом случае равно n⋅(n − 1)⋅(n− 2).

3.

Лаборант выбирает сначала две большие колбы, затем маленькую — тип [Б, Б, м]. Процентное содержание соли в чаше:

(0,8V-+-0,5V +-0,2V∕2)100
       5V∕2        = 56% ∕∈[45%;55%]

Такой выбор не благоприятствует появлению события A.

4.

Лаборант выбирает последовательно большую, малую и большую колбы — тип [Б, м, Б]. Процентное содержание соли в чаше:

(0,8V-+-0,5V∕2+0,2V-)100-
       5V∕2        = 50% ∈[45%;55%]

Такой выбор благоприятствует появлению события A.  Количество элементарных исходов в этом случае равно N ⋅n⋅(N − 1).

5.

Лаборант выбирает сначала малую колбу, затем две большие колбы — тип [м, Б, Б]. Процентное содержание соли в чаше:

(0,8V∕2+-0,5V-+0,2V-)100-
       5V∕2        = 44% ∕∈[45%;55%]

Такой выбор не благоприятствует появлению события A.

6.

Лаборант выбирает сначала две малые колбы, затем большую колбу — тип [м, м, Б]. Процентное содержание соли в чаше:

(0,8V∕2+-0,5V∕2+0,2V-)100 =42,5% ∕∈[45%; 55% ]
         2V

Такой выбор не благоприятствует появлению события A.

7.

Лаборант выбирает последовательно малую, большую и малую колбы — тип [м, Б, м]. Процентное содержание соли в чаше:

(0,8V∕2-+0,5V-+-0,2V∕2)100= 50% ∈ [45%;55%]
         2V

Такой выбор благоприятствует появлению события A.  Количество элементарных исходов в этом случае равно n ⋅N ⋅(n− 1).

8.

Лаборант выбирает сначала большую, затем две малые колбы — тип [Б, м, м]. Процентное содержание соли в чаше:

(0,8V-+0,5V∕2+-0,2V∕2)100 =57,5% ∕∈[45%; 55% ]
         2V

Такой выбор не благоприятствует появлению события A  .

Вычисляем вероятность события A (по формуле классической вероятности):

P (A) = N-⋅(N-− 1)⋅(N-−-2)+n-⋅(n−-1)⋅(n-− 2)+-N ⋅n-⋅(N-− 1)+-n⋅N-⋅(n-− 1)=
                              100⋅99⋅98

 N3-+-n3− 3N2-− 3n2+-2(N-+-n)+98Nn-
=           100⋅99⋅98           =

  100(N2− Nn +n2)− 3N2− 3n2+ 200+ 98Nn   97(N2 +n2)+ 200− 2Nn
= --------------100⋅99⋅98------------- = -----100⋅99-⋅98------=

         2
= 97(N-+n)-+-200-− 196Nn-=
       100⋅99⋅98

= 970200−-196N-(100−-N)= N2-−-100N-+-4950= (N-− 50)2+2450
       100⋅99⋅98            4950            4950

Отсюда имеем

P(A)= (N-−-50)2+-2450-< 1⇔ 45< N < 55
          4950       2

И значит, Nmin = 46.

Ответ: 46

Ошибка.
Попробуйте повторить позже

Задача 3#74503

В выпуклом четырехугольнике ABCD  длины сторон AB  и BC  равны, DB  — биссектриса угла ADC,AD :DC = 4:3.  Найдите косинус угла AKB,  если K  — точка пересечения диагоналей AC  и BD,  и BK :KD = 1:3.

Источники: ШВБ-2022, (см. olymp.bmstu.ru)

Показать ответ и решение

PIC

AD :DC = 4:3,  пусть AD =4x,DC = 3x,  BK  :KD = 1:3,  пусть BK = y,KD = 3y.  DK  — биссектриса треугольника ADC,  AK :KC = AD :DC =  =4:3,AK = 4z,KC = 3z.

Точка B  является точкой пересечения серединного перпендикуляра к диагонали AC  и биссектрисы угла D  в выпуклом четырехугольнике ABCD.  Следовательно, около этого четырехугольника можно описать окружность.

Действительно, опишем окружность около треугольника ACD,  обозначим точку пересечения биссектрисы угла D  с окружностью через B1.  Тогда по свойству вписанных углов дуги AB1  и B1C  будут равны, хорды AB1  и B1C  тоже будут равны, треугольник AB1C  будет равнобедренным, и серединный перпендикуляр к диагонали AC  и биссектриса угла D  будут пересекаться в точке B1.  Следовательно, B1 =B.

Поскольку около четырехугольника ABCD  можно описать окружность, то для его диагоналей верно равенство

AK ⋅KC  =BK ⋅KD, 4z2 =y2,y = 2z

Треугольник ABK  подобен DCK  , и CADB= BKKC-  , пусть AB =p,  поэтому

p-= y-= 2 ⇒ p= 2x⇒ x= p
3x  3z  3             2

AD = 2p, DC = 3p
              2

По теореме косинусов для треугольников ABC  и ADC  с учетом ∠B + ∠D =180∘ имеем

                              2
49z2 = 2p2 − 2p2cos∠B,49z2 = 4p2 + 9p-+ 6p2cos∠B
                             4

z = p, y = p, AK = p, BK = p
   4    2             2

Для равнобедренного треугольника ABK  имеем

          BK--  1
cos∠AKB  = 2AK = 4
Ответ:

 1
4

Ошибка.
Попробуйте повторить позже

Задача 4#74504

Найдите все значения параметра a,  при которых система

({ (ay− ax+2)(4y − 3|x − a|− x+ 5a)= 0
     (              )
(     logax2+ logay2− 2log2 a2 =8

имеет шесть различных решений.

Источники: ШВБ-2022, (см. olymp.bmstu.ru)

Показать ответ и решение

Упростим второе уравнение системы:

(    2      2  )    2                   22
 logax +logay − 2 log2a = 8⇔ a >0,a⁄= 1,logaxy =2+ 4loga2,|xy|=4a

⌊ {  ay − ax+ 2= 0           ⌊ { y =x −-2
||    |xy|=4a,a> 0,a ⁄=1        ||   |xy|= 4aa,a> 0,a⁄= 1
|| {                       ⇔ || {
|⌈    4y − 3|x − a|− x+ 5a =0   |⌈   y = 34|x− a|+ x4 − 5a4
     |xy|=4a,a> 0,a ⁄=1            |xy|= 4a,a> 0,a⁄= 1

I.

{
       y = x− 2∕a
  |xy|= 4a, a> 0,a⁄= 1.

1) Система имеет 2 различных решения, если

2   √-     1
a < 4 a,a> √34-,a ⁄=1

Найдем эти решения:

x −-2= 4a,x2− 2x− 4a =0,
   a   x      a

         √------          √------
x   = 1±--1+-4a3,y   = −1±--1+-4a3
 1∕2      a      1∕2        a

2) Система имеет 3 различных решения, если

2   √ -     -1-
a = 4 a, a= √34-

Найдем эти решения:

         √-----3          √-----3
x1∕2 = 1±-1+-4a-,y1∕2 = −1±--1+-4a-
          a                a

    √ -      √-
x3 = 2 a,y3 = −2 a

3) Система имеет 4 различных решения, если

2> 4√a, 0 <a < 1√--
a              34

Найдем эти решения:

   2  4a    2  2
x− a =-x ⇒ x − ax− 4a =0

         √-----3          √-----3
x1∕2 = 1±-1+-4a-,y1∕2 = −1±--1+-4a-
          a                a

x− 2 =− 4a⇒ x2− 2x +4a= 0
   a    x       a

         √------          √------
x3∕4 = 1±-1−-4a3,y3∕4 = −1±--1−-4a3
          a                a

PIC

II.

{
  y = 3|x − a|∕4 +x∕4− 5a∕4
   |xy|=4a, a >0,a⁄= 1

y = 3|x− a|∕4+ x∕4− 5a∕4,  при x≥ a  имеем y =x − 2a,  при x≤ a  имеем     x+a
y = − 2 .

1) Система имеет 2 различных решения, если

    √-
2a <4 a,a< 4,a⁄= 1

Найдем эти решения:

       4a    2
x − 2a= x ⇒ x − 2ax− 4a= 0

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

 x+ a    4a
−--2- =− x-⇒ x2+ ax− 8a =0

        √ -------        √-------
x2 = −-a−-a2+32a,y2 = −a+-a2+-32a
          2               4

PIC

2) Система имеет 3 различных решения, если

    √ -
2a= 4 a,a =4

Найдем эти решения:

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

        √ -2-----        √-2-----
x2 = −-a−-a-+32a,y2 = −a+-a-+-32a
          2               4

x3 = 2√a,y3 = −2√a

3) Найдем значение параметра a> 0,  при котором прямая y = − x+2a  будет касаться графика гиперболы y = 4xa.

− x+-a= 4a ⇒ x2 +ax+ 8a= 0
   2     x

D= a(a− 32)= 0,a =32.  Тогда при 4< a <32  система будет иметь 4 решения:

       ∘-2----        ∘ -2----
x1 = a+ a + 4a,y1 = −a+  a +4a

           -------           -------
     −-a±√-a2+32a      −-a∓√-a2+32a
x2∕3 =      2     ,y2∕3 =      4

Найдем четвертое решение:

        4a 2
x− 2a =− x-,x  − 2ax+ 4a= 0

       ∘------        ∘ ------
x4 = a+ a2− 4a,y4 = −a+  a2− 4a

4) При a= 32  система будет иметь 5 различных решений:

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

         √ -------         √ -------
x2∕3 = −-a±-a2+32a,y2∕3 = −-a∓-a2+32a
           2                 4

x = a+ ∘a2−-4a,y = −a+ ∘a2-− 4a
 4             4

x5 =− a∕2,y5 = −a∕4

5) Система имеет 6 различных решений при a> 32  :

        ------          ------
x1 = a+ ∘a2+ 4a,y1 = −a+ ∘ a2+4a

     − a±√a2-+32a-     − a∓√a2-+32a-
x2∕3 =------2-----,y2∕3 =------4-----

       ∘------        ∘ ------
x4 = a+ a2− 4a,y4 = −a+  a2− 4a

     − a±√a2-− 32a     − a∓√a2-− 32a
x5∕6 =------2-----,y5∕6 =------4-----

PIC

PIC

Возможны следующие случаи совпадения решений в I и II случаях:

1) x− 2a = x− 2a,a= 1,  в этом случае нет решений;

2) прямые y = x− 2a,y = − x+2a  и гипербола y = 4xa  пересекаются в одной точке, но этот случай возможен при a > 32,  и в этом случае будет 7 решений.

Ответ:

(0;√1-)∪(4;32)
   34

Ошибка.
Попробуйте повторить позже

Задача 5#74505

Шар радиуса 4
9  лежит внутри правильной четырехугольной пирамиды SABCD  со стороной основания 8 и высотой 3. Этот шар касается плоскости основания ABCD  пирамиды и боковых граней SBC  и SCD.  Плоскость γ  касается шара, проходит через точку B,  середину K  ребра CD  и пересекает ребро SC  в точке M.  Найдите объем пирамиды MBCK.

Источники: ШВБ - 2022, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

Поскольку пирамида SABCD  правильная, то центр O  указанного шара лежит в плоскости SHC  , где SH  — высота пирамиды. Пусть RP ∥SH,R∈ SC,P ∈HC,  O∈ RP.

Обозначим SH = h,AB =a,RP =kh.  Проведем PN ∥AB,N ∈BC.  E  — точка касания шара плоскости SBC,  пусть радиус шара OE = r.

PIC

Поскольку PC :HC = k,  то PN = ka∕2.  Треугольники ROE  и RPN  подобны, и OE :PN = RO :RN,  или

                                      (√ -2---2-  )
-r--= -∘-k2h−-r--2,  r= √-kh2− r-2, k= r --4h--+a-+ 1
ka∕2  k  h +(a∕2)    a   4h + a      h      a

По условию задачи a =8,h= 3,r= 4.
             9  Тогда k= 1.
   3

Точка F  — точка пересечения AC  и BK,  тогда FC = AC∕3.  Поскольку P C = kHC =  = HC ∕3=  AC∕6,F P = PC.

Пусть PQ⊥ BK  . Тогда      -a√-
PQ = 2 5.  Если α= ∠OQP,  то      r2√5  √5
tgα=   a =  9 .  Угол между плоскостью γ  и плоскостью основания равен 2α.  Тогда

       2tgα     4√5ar   9√5
tg2α = 1− tg2α-= a2-− 20r2 =-38

Пусть MG  — отрезок перпендикуляра, опущенного из точки M  на плоскость основания ABC  , и MG = nh  .

PIC

Тогда CG = nCH  . Если GV ⊥ BK  , то

GV = GF-h0 = AC-∕3-− nAC-∕2h0 = 2− 3nh0,
     CF         AC∕3         2

h0 = a√5  — высота треугольника BCK,  проведенная из вершины C.

       2nh√5          4ra2       12
tg2α= (2− 3n)a,n= (h+-6r)a2− 20hr2 = 37

           2
VMBCK = 1⋅ a-nh = 192
        3  4     37
Ответ:

 192
 37

Ошибка.
Попробуйте повторить позже

Задача 6#74506

В 2022 году исполняется 65 лет запуска первого искусственного спутника Земли (ИСЗ). В настоящее время для обеспечения бесперебойной работы сотовой связи, систем теле и радиовещания используются различные виды спутников, находящихся на различных орбитах, на различных высотах.

Зоной покрытия спутника назовем часть поверхности земного шара, в пределах которой обеспечивается уровень сигналов к спутнику и от него, необходимый для их приема с заданным качеством в конкретный момент времени. Как правило, эта часть поверхности ограничивается окружностью, проходящей по линии видимого горизонта. На рисунке линия проходит через точку Г:

PIC

a) Определите площадь земной поверхности (в км2  ), которая является зоной покрытия спутника, находящегося на высоте H = 500  км относительно земной поверхности, считая ее сферой радиуса R = 6400  км с центром в точке O.

б) Найдите все значения n >1,  для которых на поверхности земли можно расположить окружности C1,...,Cn,  каждая из которых внешним образом касается окружности C0,  с центром в точке A  и радиусом r< R,  каждая из них является границей зоны покрытия ИСЗ, находящегося на той же высоте H  , что и спутник с зоной покрытия C0.  Каждая из зон покрытия Ci  должна внешним образом касаться окружностей C0  и Ci+1,i=0,1,...,n− 1,  т.е. первая касается C0  и C2,  вторая — C0  и C3,  и т.д. Окружность Cn  должна касаться C0  и C1.

Источники: ШВБ-2022, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

PIC

а) Зона покрытия — часть сферы, лежащая внутри конуса. S = 2πR⋅h  , где h= A3  — высота сегмента. h =R − R cosα  , здесь угол  α  — угол между радиусом ОГ и линией ОА, соединяющий центр сферы с центром окружности, которая является линией пересечения сферы и конуса.

Тогда площадь равна

                     (        )
S = 2πR2(1− cosα)= 2πR2 1−--R-- = 2πR2⋅--H-- ≈
                         R +H         R + H

       2 500-     2 10  4096-  5          5           2
≈6 ⋅6400 ⋅6900 =6400 ⋅23 ≈ 23 ⋅10 ≈178,09⋅10 = 17809000 км

б) Пусть О — центр сферы, В — точка касания первой и второй окружности, А и A1  их центры этих окружностей, З,З1,З2  — точки пересечения радиусов R  со сферой. Обозначим α  — угол между ОЗ и ОВ. Тогда       r-
sinα = R,ЗЗ1 = 2r.

PIC

В правильной пирамиде ОЗЗ1З2  плоские углы при вершине равны 2α,  двугранный угол при ребре О3 равен 360∕n.  Опустив перпендикуляры из точек З1  и З2  на ребро О3 в точку H, треугольники ОЗ,З1  и ОЗЗ2  равны (по трем сторонам), т.к. две стороны равны R,  а третья 2r.

PIC

                                ∘ --------
НЗ1 =Н З2 = 2rcosα= 2r∘1−-sin2α =2r 1− ( r)2
                                      R

                                 ∘----r2-
⇒ 2r=ЗЗ1 =ЗЗ2 =2⋅Н З1⋅sin(180∕n)= 4r 1− R2-sin(180∕n)

 ∘ ------                        ( ∘ -----)
      r2                                r2
2  1− R2 sin(180∕n)= 1⇒ sin(180∕n)= 1∕(2 1− R2) > 1∕2⇒  n< 6
Ответ:

а) 17809000

б) 2,3,4,5

Рулетка
Вы можете получить скидку в рулетке!