ШВБ - задания по годам → .07 ШВБ 2021
Ошибка.
Попробуйте повторить позже
Функция при всех действительных
удовлетворяет соотношению
Решите уравнение
Источники:
Сделаем замену:
Тогда функция при всех вещественных
удовлетворяет соотношению
При всех фиксированных значения
и
удовлетворяют системе уравнений:
Подставим первое уравнение во второе:
Решим заданное уравнение:
Ошибка.
Попробуйте повторить позже
При каких целых значениях параметра для корней
уравнения
выражение будет натуральным числом?
Источники:
Из формул для корней уравнения имеем, что
Поэтому выражение из условия равно
Так как — целое, то результат будет натуральным, когда
Так что возможные значения параметра находятся из
совокупности:
Подходят значения параметра
Ошибка.
Попробуйте повторить позже
При каких значениях параметра площадь фигуры, ограниченной на координатной плоскости
линиями
равна
Источники:
Рассмотрим и нарисуем графики функций и
Так как мы работаем в плоскости то
и
являются вертикальными линиями, двигающимися вдоль
при изменении
Получается, что мы должны рассматривать площадь параллелограмма.
Так как и
не зависят от параметра
, то мы можем воспользоваться формулой
где
— длина прямой,
ограниченной нашими функциями, а
— расстояние между вертикальными линиями.
Заметим, что мы можем очень легко найти:
По условию:
Так же можно представить как:
Осталось лишь найти корни уравнения, когда
Ошибка.
Попробуйте повторить позже
Найдите наибольшее натуральное число для которого верно неравенство
Источники:
Вычислим сумму
Заметим, что сумма кубов до вся сокращается, и остаётся только
Отсюда выразим сумму квадратов.
Теперь проделаем аналогичные преобразования для вычисления суммы
Все эти формулы, конечно, желательно и так помнить, но если забыли, то можно будет вывести так или по индукции. Тогда возвращаясь к неравенству
Отсюда получаем, что наибольшее натуральное значение, при котором верно равенство, равно
Ошибка.
Попробуйте повторить позже
На стороне треугольника
отмечена точка
так, что
Около треугольника
описана
окружность. Через точку
и точку
лежащую на стороне
проведена прямая, которая пересекает окружность в точке
причем
Найдите
если
— биссектриса треугольника
Источники:
Из условия мы знаем, что
а из вписанного четырёхугольника
Откуда получаем, следующие
равенства
Значит, отрезок является отрезком касательной к окружности. Теперь мы понимаем, что
подобен
Запишем
соответствующие отношения сторон и подставим значения из условия:
Так как мы знаем, что
— биссектриса, то запишем свойство, подставив известные значения
К тому же мы нашли поэтому
Давайте теперь запишем формулу для биссектрисы и вычислим
её:
Пусть
где
точка пересечения прямой
с окружностью,
Четырехугольник
вписан в
окружность, откуда из произведения отрезков хорд
По свойствам касательных и секущих к окружности имеем
Теперь осталось только решить систему из полученных уравнений в
пункте
Откуда Решив уравнение, получим
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра при которых система
имеет решения. Укажите эти решения при найденных значениях параметра
Источники:
Сделаем следующие замены:
Имеем
Система распадается на совокупность трёх систем:
В системе координат изобразим решение системы
Имеем решение
Тогда
Откуда получается, что
При записи же ответа через нужно учитывать знаки
, т.е.
при
а при имеем
Имеем решение
при
. Тогда
Откуда получается, что
или
3) Имеем решение при
. Тогда
Откуда получается, что
или
при
имеем
при
имеем
при
имеем
при
имеем
Ошибка.
Попробуйте повторить позже
Основанием пирамиды служит прямоугольный треугольник
с катетами
и
Высотой пирамиды
является отрезок
где точка
симметрична точке
относительно середины отрезка
Точка
принадлежит боковому ребру
причем
Найдите площадь сечения пирамиды плоскостью, проходящей через
параллельно гипотенузе основания
и отрезку
если расстояние от точки
до секущей плоскости равно
Источники:
Треугольник — прямоугольный,
точка
точка
симметрична
относительно
Секущая плоскость
проведена через точку
расстояние
от точки
до плоскости
Мы понимаем, что
. Также
(
средняя
линия
),
. Тогда видим, что
К тому же
Аналогично, Плоскость
содержит
сечение — треугольник
Для площадей, в силу подобия треугольников, имеем соотношение
Отметим на
точку
такую, что
Тогда
Через
проведём прямую
и пусть она пересекает прямую, параллельную
и проходящую через
в точке
Тогда по теореме о
перпендикулярах
откуда
Найдем
Поскольку
и расстояние
от точки
до плоскости
равно расстоянию от точки
до
плоскости
Длина отрезка
равна высоте треугольника
Имеем Пусть
. Тогда
Ошибка.
Попробуйте повторить позже
Искусственный спутник (ИСЗ) движется по круговой орбите вокруг Земли (имеет форму шара) на высоте равной радиусу Земли
км, с периодом обращения
ч и постоянной угловой скоростью
Для того, чтобы можно было наблюдать за
спутником с поверхности Земли, он должен находиться выше плоскости горизонта. Определите:
а) продолжительность наблюдения спутником (в минутах) от момента его появления над горизонтом до момента захода за горизонт, если траектория ИСЗ проходит ровно над головой наблюдателя;
б) плоский угол при вершине конуса обзора поверхности Земли с ИСЗ (в градусах).
Источники:
Пусть наблюдатель находится в точке
— линия пересечения плоскости горизонта и плоскости орбиты. Спутник проходит над
головой наблюдателя.
При движении спутника из точки в точку С по дуге окружности, его проекция на Землю двигается из точки
в
точку
Угловая мера этой дуги
равна величине центрального угла. Учитывая симметрию, получим время
наблюдения
Угол находим из прямоугольного треугольника
следовательно, мин.
Угол обзора участка Земли с орбиты равен углу или
градусов.
а) минут, б)
градусов
Ошибка.
Попробуйте повторить позже
На боковых рёбрах правильной треугольной пирамиды
соответственно выбраны точки
так, что
. Точка
— центр сферы, описанной около пирамиды
Докажите, что прямая
перпендикулярна
плоскости
Найдите радиус этой сферы и объём пирамиды
если сторона основания
боковое ребро
1) Докажем, что прямая перпендикулярна плоскости
Точка
лежит в плоскости
,
— середина
Спроецируем
точку
на плоскость
ее проекция
центр описанной около треугольника
окружности. Прямая
— проекция
на плоскость
Докажем, что
Поскольку то
подобен
тогда
Докажем, что
т.е.
— точка пересечения прямых
и
По свойству вписанных углов
имеем:
Пусть — диаметр рассматриваемой окружности. Тогда
Таким образом,
Аналогично доказывается, что проекция на плоскость
перпендикулярна
Согласно теореме о трех перпендикулярах,
также будет перпендикулярна двум пересекающимся прямым
и
лежащим в плоскости
следовательно,
2) Обозначим через длину стороны основания пирамиды
Обозначим через
длину бокового ребра пирамиды
Пусть
— высота пирамиды
Тогда
В основании пирамиды
лежит
равнобедренный треугольник
— его высота,
— середина
Высота
пирамиды
проведенная из вершины
лежит на прямой
Для вычисления объема пирамиды
нужно найти
и
На боковом ребре отметим точки
и
так, что
Пусть Тогда
Значит,
Итак, объем пирамиды вычисляется по формуле