Тема Звезда (только часть с задачами по математике)

Звезда - задания по годам .01 Звезда до 2020

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела звезда (только часть с задачами по математике)
Разделы подтемы Звезда - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#49163

По кругу записаны 2019  чисел. Для любых двух соседних чисел x  и y  выполняются неравенства |x− y|≥ 2,x +y ≥6  . Найдите наименьшую возможную сумму записанных чисел.

Источники: Звезда - 2019 (см. zv.susu.ru)

Показать ответ и решение

Всего чисел нечётное количество, поэтому найдутся такие три подряд идущих числа x,y,z  , что x ≥y ≥z  . Тогда y− z ≥ 2,y+ z ≥ 6  , откуда y ≥ 4  . Отсюда x≥ y+ 2≥ 6  , то есть хотя бы одно из чисел не меньше 6  . Остальные разбиваем на пары (в каждой паре сумма не меньше 6  ) и получаем, что сумма чисел по всему кругу не меньше 6+1009⋅6= 6060  .

В качестве примера рассмотрим последовательность

...4,2,6,4,2,4,2,4,2,4,2...
Ответ:

 6060

Рулетка
Вы можете получить скидку в рулетке!