Тема ДВИ по математике в МГУ

ДВИ в МГУ - задания по годам .13 ДВИ 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дви по математике в мгу
Разделы подтемы ДВИ в МГУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#64520

Найдите в явном виде целое число, заданное выражением

√-- (---2----  ---2---)
 11⋅ √11-− √7-+ √11+ √7

Источники: ДВИ - 2022, вариант 222, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Иррациональные знаменатели нам точно не нужны. Подумайте, как мы можем от этой иррациональности избавиться и посмотрите внимательно на оба знаменателя при этом :)

Подсказка 2

Если перед Вами все еще сумма двух дробей – самое время это исправить и преобразовать их к единой дроби. А заодно можем раскрыть все скобки и привести подобные, ведь пока не видно каких-то других преобразований. А нужны ли они или уже можем все посчитать?

Показать ответ и решение

Приведём выражения к общему знаменателю и воспользуемся формулой разности квадратов a2− b2 = (a− b)(a +b)

√-- 2⋅(√11− √7)+2 ⋅(√11+ √7)  √11-⋅4√11-
 11⋅---(√11−-√7)(√11+-√7)---= ----4--- = 11
Ответ: 11

Ошибка.
Попробуйте повторить позже

Задача 2#64521

Определите, какое из двух чисел больше: ∘3-+2√2 +∘3-−-2√2-  или 3.

Источники: ДВИ - 2022, вариант 223, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Как можно сравнивать между собой положительные числа? Как мы можем избавиться от некоторых корней?

Подсказка 2

Можно просто сравнить квадраты данных чисел!

Показать ответ и решение

   ∘ ---√-- ∘ ----√-
a=   3+ 2 2+  3− 2 2> 0

 2     √ -   ∘ ----√- ∘ ---√--     √-       ∘ 2----√-2-
a = 3+2  2+2 ⋅ 3+ 2 2⋅  3− 2 2 +3− 2 2= 6+ 2⋅ 3 − (2 2) =8

Поскольку a> 0  , то a= √8 <3 =√9-  .

Ответ: второе

Ошибка.
Попробуйте повторить позже

Задача 3#64522

Найдите в явном виде натуральное число, заданное выражением (2√2-)2∕3+ ( 27√-)2∕3− 13.
 27       2 2     18

Источники: ДВИ - 2022, вариант 225, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка

Вспомним свойства степеней и представим числа внутри дробей, чтобы избавиться от дробей в степенях! Тогда выражения приятно преобразуется и мы получим натуральное число.

Показать ответ и решение

Воспользуемся тем, что 2√2-= (√2)3,27 =33  , тогда выражение примет вид

(√2)2∕3⋅3    32∕3⋅3    13   2  9  13   4+81− 13  72
-32∕3⋅3- +(√2)2∕3⋅3 − 18-= 9 + 2 − 18 =--18---= 18 = 4
Ответ: 4

Ошибка.
Попробуйте повторить позже

Задача 4#64523

Определите, какое из двух чисел больше: √315  или 9√14.

Источники: ДВИ - 2022, вариант 226, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка

Заметим, что 9 можно представить как √3 в некоторой целой степени, после этого мы сможем перейти к сравнению показателей) А чтобы сравнить получившиеся показатели степени, удобно будет просто сравнить их квадраты

Показать ответ и решение

Чтобы сравнить было проще, сделаем одинаковыми основания, используя 9= √34  , тогда нам требуется сравнить √315  и √34⋅√14-  , или, что то же самое, 15  и   √--
4⋅ 14  . Достаточно возвести равенство в квадрат, тогда  2       2
15 = 225> 4 ⋅14 =224  , откуда первое число больше.

Ответ: первое

Ошибка.
Попробуйте повторить позже

Задача 5#64524

Определите, какое из двух чисел больше: √3+ √7+ √21  или 9.

Источники: ДВИ - 2022, вариант 227, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка

Корней очень много, поэтому от них надо избавляться путем возведения в квадрат!

Показать ответ и решение

Покажем, что второе число больше. Перепишем неравенство в виде

√-  √-  √--       √-  √-      √-    √-   √ -  √ - √-
 3+  7+  21< 9⇐ ⇒  7+  21< 9−  3⇐ ⇒  7(1 +  3) <  3(3 3− 1)

Далее возведём в квадрат

     √-2     √-   2        √ -          √ -
7(1+  3) <3(3 3− 1) ⇐ ⇒ 7+ 14  3+21< 81− 18  3+3 ⇐⇒

⇐ ⇒ 32√3-< 56⇐⇒ 4√3 <7 ⇐⇒ 48< 49

Последний переход также был возведением в квадрат. Таким образом, неравенство доказано.

Ответ: второе

Ошибка.
Попробуйте повторить позже

Задача 6#64684

Высота правильной треугольной призмы ABCA ′B′C′ с основанием ABC  и боковыми рёбрами AA ′,BB ′,CC′ равна 1.  Найдите длину ребра основания, если известно, что   ′    ′
AB ⊥ BC .

Источники: ДВИ - 2022, вариант 223, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Как мы можем применить данную нам перпендикулярность? Кажется, будет удобно построить из точки B' прямую B'B₁, параллельную BC' и взглянуть, на полученную конструкцию. Обозначьте неизвестную сторону основания какой-нибудь переменной и попробуйте выразить всё что тут можно!

Подсказка 2

В основании правильный треугольник, значит у нас есть угол в 60°. Имея в треугольнике две стороны и угол мы сумеем выразить третью сторону: отрезок, соединяющий А с точкой пересечения B'B₁ и плоскости основания. Эту же сторону мы можем выразить при помощи т. Пифагора.

Подсказка 3

Осталось только решить квадратное уравнение, отсечь лишний корень (сторона ведь не может быть отрицательной!) и задача повержена!

Показать ответ и решение

PIC

Достроим основания призмы ABC, A′B ′C ′ до параллелограммов, получим ABCD,A ′B′C′D′ . Получится параллелепипед, в котором AB ∥DC, AB =CD  и AB ′ ∥DC′,AB′ = DC′ , отсюда DC′ ⊥ BC ′ . Кроме того, BC′ = DC′ (призма правильная, можно воспользоваться симметрией. Отсюда △BC ′D  прямоугольный и равнобедренный. Если AC ∩ BD = M  , то C ′M  будет высотой этого треугольника, если дополнительно AB = a  , то                 √-
C′M  =DM  =BM  = -32a,CM  = AM = a2  (используем свойства правильного треугольника). Из условия CC ′ =1  , применяя теорему Пифагора:                                         -
C′C2+ CM2 = C′M2 ⇐ ⇒ 1+ a2∕4= 3a2∕4 ⇐⇒ a= √2  .

Ответ:

 √2

Ошибка.
Попробуйте повторить позже

Задача 7#64685

Дана правильная треугольная пирамида ABCS  с основанием ABC  и вершиной S.  Плоскость π  перпендикулярна ребру AS  и пересекает рёбра AS,BS  в точках D,E  соответственно. Известно, что SD = AD  и SE = 2BE.  Найдите косинус угла между ребром AS  и плоскостью основания ABC.

Источники: ДВИ - 2022, вариант 225, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пирамида правильная, поэтому мы чётко знаем куда падает её высота и искомый косинус будет легко выражаться, как только мы узнаем отношение её бокового ребра к ребру основания. Плоскость π перпендикулярна AS. Что в таком случае можно сказать о прямой DE пересечения этой плоскости с плоскостью (SAB)?

Подсказка 2

Итак, DE ⊥ AS. Тогда мы можем, зная положения точек D и E выразить косинус угла при вершине S. Рассмотрите теперь равнобедренный треугольник-грань △ASB: теорема косинусов поможет нам связать его боковые стороны со стороной основания.

Подсказка 3

Пирамида правильная, значит её высота падает в центр основания. Воспользуйтесь свойствами правильного треугольника и найденным в предыдущем пункте соотношением, чтобы выразить искомый косинус.

Показать ответ и решение

PIC

Пусть a  — длина ребра основания и b  — длина бокового ребра. В прямоугольном треугольнике SDE  имеем SD = 12b  и SE = 23b  . Стало быть, cos∠ASB = 34  . Применяя теорему косинусов к треугольнику ASB  , получаем, что a2 =2b2− 2b2⋅ 34  , откуда     √-
b= a 2  . Пусть O  — центр основания. Тогда в прямоугольном треугольнике ASO  имеем         √ -
AS = b=a  2  и       √-
AO =a∕ 3  . Стало быть,                   √-
cos∠SAO = AO∕AS =1∕ 6  .

Ответ:

√1-
  6

Ошибка.
Попробуйте повторить позже

Задача 8#90019

Решите неравенство

(  2       2   )x2−2x
2log2 x− log2x +1    ≤ 1.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Обратим внимание на выражение в скобках: это сумма квадратов, она больше 0. Тогда ограничение на основание степени выполнено всегда!

Подсказка 2

Давайте представим 1 как выражение в скобке в степени 0. Теперь можно применить метод рационализации. Не забудьте про ОДЗ: у аргумента логарифма тоже есть ограничения.

Показать ответ и решение

С учётом x> 0  и замены t=logx
    2  , для ОДЗ получим 2t2− 2t+ 1> 0  , что выполнено всегда. Рассмотрим случаи

1.

2t2− 2t+ 1> 1⇔ t∈ (− ∞,0)∪(1,+ ∞)⇔ x ∈(0,1)∪ (2,+∞ )  . В этом случае неравенство эквивалентно x2 − 2x≤ 0  , то есть x ∈[0,2]  , в итоге x ∈(0,1)  .

2.

  2
2t − 2t+ 1= 1⇔ x= 1,2  — подходят оба значения.

3.

  2
2t − 2t+ 1< 1⇔ x∈ (1,2)  , тогда  2
x − 2x≥ 0⇔ x∈ (−∞,0]∪[2,+ ∞)  , здесь решений не будет.

Ответ:

 (0;1]∪{2}

Ошибка.
Попробуйте повторить позже

Задача 9#90021

Решите неравенство

  √---         √---
log 6−x(6+x)+ log 6+x(6 − x)≤ 5.

Источники: ДВИ - 2022, вариант 225, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Начнём, как всегда, с ОДЗ! Следующим шагом стоит избавиться от корней в основании логарифмов, какое свойство нам в этом поможет?

Подсказка 2

Попробуйте сделать замену: t = log₆₋ₓ(6 + x), после применения свойства логарифмов перед нами будет обычное рациональное неравенство, решите его!

Подсказка 3

Аккуратная работа с обратной заменой поможет нам добить задачу

Показать ответ и решение

После замены t= log   (6+ x)
     6−x  по свойствам логарифмов получаем неравенство

   2
2t+ t ≤5

 2  5
t-−-2t+1 ≤0
    t

По методу интервалов

t< 0 или 1≤ t≤ 2
        2

По методу рационализации на ОДЗ x∈ (− 6;6)∖{−5;5} получаем

(6− x− 1)(6+ x− 1)< 0 или (6− x− 1)((6+x)− (6− x)2)≤0,(6− x − 1)((6+ x)2− (6− x))≥ 0

(5 − x)(5 +x)< 0 или (x− 5)(x2− 13x +30)≤ 0,(x− 5)(x2+13x+ 30)≤0

Первое условие после пересечения с ОДЗ дает решения 5< |x|<6,  которые сразу заносим в ответ. Если же первое условие не выполнено, то x − 5≤ 0,  поэтому второе условие при x ⁄= 5  (x= 5  всё равно не входит в изначальную ОДЗ) эквивалентно системе

x2− 13x+ 30 ≥0,x2+ 13x+ 30≥ 0

решения которой

x∈ [−3;3]

тоже добавляем в ответ.

Ответ:

 (−6;−5)∪[−3;3]∪(5;6)

Ошибка.
Попробуйте повторить позже

Задача 10#90022

Решите неравенство

 log √x  -2-
x  2  ≥ √x .

Источники: ДВИ - 2022, вариант 222, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Воспользуйтесь основным логарифмическим тождеством, чтобы 1/√х представить в виде 2 в некоторой степени. Точно также и х в левой части можно записать как степень двойки.

Подсказка 2

Внимательно поработайте со свойствами степеней, чтобы перед нами осталось сравнение 2 в некоторых степенях. Теперь можно перейти и к сравнению показателей!

Подсказка 3

Сделайте замену t = log₂(x) и решите получившееся рациональное неравенство. Осталось сделать обратную замену, пересечь результаты с ОДЗ и записать ответ!

Показать ответ и решение

Воспользуемся, что x =2log2x,  тогда -1-=x− 12 = 2− 12log2x.
√x  Исходное неравенство примет вид

 1log2x  1− 1 logx
22  2 ≥ 2 2  2

Так как основание больше 1, то можем перейти к неравенству на степени с сохранением знака неравенства

1log2x≥ 1− 1log x
2  2      2   2

(log2x+2)(log2x− 1)≥0

Перейдём к равносильному неравенству с учётом ОДЗ

{ x> 0                  (  1]
  (x− 1∕4)(x − 2)≥ 0 ⇐⇒ x ∈ 0;4 ∪ [2;+∞ ).
Ответ:

(0;1 ]∪[2;+∞ )
  4

Ошибка.
Попробуйте повторить позже

Задача 11#90038

Решите неравенство

    ( 2  3)
logx  x + 2 ≤ 4logx2+32(x).

Источники: ДВИ - 2022, вариант 226, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Видим, что аргумент одного логарифма равен основанию другого, как в таком случае мы можем сделать логарифмы одинаковыми?

Подсказка 2

Можно заменить логарифм справа на t, тогда слева будет 1/t! Данное неравенство относительно t легко решается методом интервалов

Подсказка 3

После обратной замены можно заметить, что основание логарифма больше единицы, поэтому от сравнения логарифмов (все числа представляем в виде логарифмов по основанию х² + 1,5) можно перейти к сравнению их аргументов без смены знака. Таким образом получаем дробно-рациональные неравенства относительно х, решаем их, пересекаем с ОДЗ и получаем ответ)

Показать ответ и решение

Запишем ОДЗ

(|  x> 0
|||||   2  3
{  x + 2 > 0  ⇐⇒   x∈ (0;+∞ ) {1}
||||  x⁄= 1
||(  x2+ 3⁄= 1
       2

Сделаем замену

                    (     )
t= log 2 3x  =⇒   logx x2+ 3  = 1,t⁄= 0
     x+ 2                2    t

Тогда получаем

1          4t2− 1
t ≤ 4t =⇒    t   ≥ 0

(2t− 1)(2t+ 1)
-----t-----≥ 0

Решая методом интервалов последнее неравенство получаем, что

   [    )  [   )
t∈  − 1;0 ∪ 1;∞
     2      2

Сделаем обратную замену.

⌊ − 1 ≤log 2 3x <0
||  2    x +2
⌈ log   3x≥ 1
    x2+ 2   2

Из второго неравенства получаем, что

   ∘ ----3              3
x ≥  x2+ 2  =⇒  x2 ≥x2+ 2 -неверное неравенство

Рассмотрим первое неравенство:

(                     (
||{ logx2+32 x ≥− 12       |{ x≥ ∘--1---
||                =⇒   |(      x2+ 32
( logx2+32 x <0           x< 1

(     3                (
||{ x4+-2x2−-1≥ 0        ||{ 2x4+-3x2-− 2 ≥0
|   x2 + 32        =⇒   |   2x2+ 3
|( x< 1                 |( x< 1

(
||{ (x2+-2)(2x2− 1)≥ 0
|     2x2+3
|( x <1

Решая методом интервалов неравенство, получаем, что

   (     √-]  [√ -  )
x∈  −∞;− -2- ∪ --2;∞
          2     2

Объединяя с ОДЗ, получаем

   [√-  )
x∈  -2;1
     2
Ответ:

 x ∈[√2;1)
     2

Ошибка.
Попробуйте повторить позже

Задача 12#90041

Решите неравенство

log3(1− x)− log3(1+ x)+log1+x(1− x)− 1≤ 0.

Источники: ДВИ - 2022, вариант 223, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте воспользуемся свойствами логарифмов, чтобы сделать их основания одинаковыми. При этом в нашем выражении появятся дроби – их можно просто привести к общему знаменателю

Подсказка 2

Попробуйте как-то сгруппировать слагаемые, чтобы разложить выражение на множители, после останется лишь применить метод рационализации и пересечь решение с ОДЗ

Показать ответ и решение

Запишем ОДЗ

(|  1− x> 0
{  1+ x> 0   =⇒  x ∈(−1;0)∪(0;1)
|(
   1+ x⁄= 1

На ОДЗ верны следующие преобразования

log1+x(1−-x)  ---1--   log1+x(1−-x)⋅log1+x-3  log1+x3
  log1+x3   −log1+x 3 +     log1+x3      − log1+x3 ≤ 0

log  (1− x)(1+ log   3)− (1+log  3)          (1+log  3)(log  (1− x)− 1)
---1+x--------log1+x3---------1+x-- ≤0  =⇒   -----1+x-log--1+x3---------≤ 0
               1+x                                   1+x

(1−-log1+x 13)(log1+x(1−-x)− log1+x(1+x))
         log1+x3− log1+x1          ≤ 0

Используем метод рационализации

        (      1)                                 (    )
(1+x-− 1)-1+-x−-3-⋅(1+-x−-1)(1−-x−-(1+-x))-≤0 =⇒   2x2 2 +x  ≥0
            (1+ x− 1)(3− 1)                         3

Решая последнее неравенство методом интервалов и объединяя с ОДЗ, получаем, что

   [  2 )
x ∈ − 3;0  ∪(0;1)
Ответ:

 x ∈[− 2;0)∪(0;1)
     3

Ошибка.
Попробуйте повторить позже

Задача 13#90132

Найдите наименьшее целое число, большее, чем √√17+3.
 17−3

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Для того, чтобы удобно было оценивать наше число, избавимся от иррациональности в знаменателе: на что удобно для этого домножить нашу дробь?

Подсказка 2

Умножьте дробь на такое выражение, чтобы в знаменателе образовалась разность квадратов.

Подсказка 3

Воспользуйтесь формулами сокращённого умножения, чтобы раскрыть скобки в числителе и в знаменателе, можно ли сократить получившуюся дробь?

Подсказка 4

Осталось оценить √17 и можно записывать ответ!

Показать ответ и решение

Избавимся от иррациональности в знаменателе

   √17-+3   26 +6√17   13 +3√17
T = √17-− 3 =--8----= ---4----

Поскольку    √--
4<  17< 5  , то

(13+ 12)∕4< T <(13+15)∕4

6< 25∕4< T < 7

Тогда ответом будет 7.

Ответ: 7

Ошибка.
Попробуйте повторить позже

Задача 14#90133

Сумма первых пятнадцати членов арифметической прогрессии в два раза больше суммы первых десяти членов. Найдите первый член этой прогрессии, если известно, что пятый её член равен 7.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть а — первый член прогрессии, d — её знаменатель. Вспомните формулу n-ного члена прогрессии и суммы первых n членов, запишите уравнением условие о соотношении сумм.

Подсказка 2

Из полученного линейного уравнения можно сделать вывод о соотношении а и d.

Подсказка 3

Запишите формулой 5-й член прогрессии и подставьте в неё ранее найденное отношение. Задача убита!

Показать ответ и решение

Пусть данная прогрессия имеет вид a =a +(k− 1)d
k  . Из условия получаем

a1+ ⋅⋅⋅+ a15 =15a+ 105d =2 ⋅(a1+ ⋅⋅⋅+a10)= 20a+ 90d

a= 3d

Тогда

a+ 4d= a+ 4a= 7
          3

a= 3
Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 15#90134

Решите уравнение

tgxtg2x+ 3= 0.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем, как можно упростить уравнение. Было бы удобно сделать замену и решить обычное, не тригонометрическое уравнение. Как это сделать?

Подсказка 2

Применим формулу тангенса двойного угла. Тогда при замене t = tg(x) и домножении левой и правой части на 1 - tg²x получим обычное квадратное уравнение.

Показать ответ и решение

Применим формулу тангенса двойного угла

    -2tgx--
tgx⋅1− tg2x = −3

2 tg2x= 3tg2x− 3

      √ -
tgx= ±  3⁄= ±1

     π
x =± 3 + πn,n∈ ℤ
Ответ:

± π + πn, n∈ ℤ
  3

Ошибка.
Попробуйте повторить позже

Задача 16#90135

Середины сторон выпуклого четырёхугольника ABCD  лежат на окружности. Известно, что AB = 1,BC = 4,CD =8  . Найдите AD  .

Источники: ДВИ - 2022, вариант 221, задача 5 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Попробуем найти еще какие-то хорошие свойства у внутреннего четырехугольника? Какими являются его стороны?(попарно противоположные)

Подсказка 2

Внутренний четырёхугольник является параллелограммом! Так он еще и вписан….кто же он тогда?

Подсказка 3

Внутренний четырехугольник является прямоугольником! Что тогда можно сказать про диагонали большего четырехугольника?

Подсказка 4

Диагонали большего четырехугольника перпендикулярны! Чем тогда можно воспользоваться при вычислении сторон большего четырехугольника?

Подсказка 5

Можно воспользоваться теоремой Пифагора для четырех треугольников, на которые разбился больший четырехугольник!

Показать ответ и решение

Четырёхугольник EFGH  является параллелограммом, поскольку стороны попарно параллельны диагоналям ABCD  , но раз он вписан, то также является прямоугольником, то есть диагонали ABCD  перпендикулярны.

PIC

Пусть AC∩ BD = I  , отсюда AI2 +BI2 = 1,BI2+ CI2 = 16  и CI2 +DI2 =64  , тогда

AI2+ DI2 = AD2 =1+ 64− 16=49

AD =7
Ответ: 7

Ошибка.
Попробуйте повторить позже

Задача 17#90136

Найдите все значения параметра a  , при которых уравнение

 2        4∘ --2  a2
x + (1− a+   |x|) =  4

имеет ровно три решения.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Проверим, что будет, если подставить в уравнение -х на место х?

Подсказка 2

Уравнение получилось таким же! Значит, если х₀ является решением уравнения, то и -х₀ будет также решением. Тогда нечётное число решений может быть только в том случае, если -х₀ = х₀.

Подсказка 3

Подстановкой получите значения а, при которых решений может быть нечётное число, но как проверить, будет ли их именно 3, а не 1/5/7 и т.д.?

Подсказка 4

Один из случаев (с дробным значением а) удобно проверить оценкой, какие значения принимает каждое из слагаемых?

Подсказка 5

Во втором случае удобно решать графически: пусть y = (1 - a + ⁴√|x|), постройте график и определите количество решений!

Показать ответ и решение

Решений нечётное количество, в силу симметрии x ↔ −x.  Тогда единственным решений должен быть x =0 :

       2   2
1− 2a +a = a ∕4

          2
a= 2 или a= 3

Если a= 2  , то  2  ∘4--   2
x +(  |x|− 1) = 1  , это легко решить графически:

PIC

То есть a= 2  подойдёт, при a= 23  получим             --
19 = x2+(13 +∘4|x|)2  , где вторая скобка не меньше (13)2  , то есть решение только одно — x =0  .

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 18#90137

Объём треугольной призмы ABCA ′B′C′ с основанием ABC  и боковыми рёбрами AA′,BB ′ , CC ′ равен 72. Найдите объём тетраэдра DEF G  , где D  — центр грани     ′ ′
ABB  A,E  — точка пересечения медиан треугольника  ′ ′ ′
A BC ,F  — середина ребра AC  и G  — середина ребра BC.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Лежащих в одной или хотя бы в параллельных плоскостях, оснований у призмы и тетраэдра не видно. Значит попробуем достроить удобную для вычисления фигуру, с помощью которой можно найти искомый объём через отношение.

Подсказка 2

Продлим ED до пересечения с плоскостью АВС, назовём I полученную точку. Как связаны объёмы тетраэдров IEFG и DEFG?

Подсказка 3

Связать объём тетраэдра IEFG с объёмом призмы можно взяв за основание тетраэдра △IFG: как его сторона FG и высота к этой стороне связаны с высотой и сторонами △АВС? Осталось аккуратно записать все найденные отношения и мы получим ответ!

Показать ответ и решение

Пусть C′H  и CJ  — медианы верхней и нижней грани, тогда D  лежит на HJ  — в центре средней линии параллелограмма. Отсюда следует, что при отражении E  относительно D  мы попадём на CJ  — в точку I  , то есть VDEFG =VEFGI∕2  .

PIC

Также в силу симметрии JI = HE = EC∕2  (E  — точка пересечения медиан), тогда CI = 2⋅EC = 4∕3 ⋅CJ  , однако заметим, что   FG  делит CJ  пополам, то есть делит CI  в отношении 3 :5  от вершины C  , откуда

SIFG = 5∕3⋅SCFG = 5∕12 ⋅SABC,

при этом высота совпадает с высотой призмы, откуда

VDEFG = VEFGI∕2= 5∕24⋅1∕3⋅SABC ⋅h =5,

где h  — та самая высота.

Ответ: 5

Ошибка.
Попробуйте повторить позже

Задача 19#90408

Решите уравнение

 √2   √2-    1      1
sinx-+ cosx-= sin2x + cos2x-.

Источники: ДВИ - 2022, вариант 224, задача 3 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Сразу запишем ОДЗ ;) Перед нами выражение, в обеих частях которого стоят дроби. Это может быть не совсем удобно, а как от них избавиться?

Подсказка 2

Домножим обе части равенства на квадраты синуса и косинуса!

Подсказка 3

На что похоже выражение слева? Быть может, его можно попробовать «собрать»?

Подсказка 4

В выражении слева выносится удвоенное произведение синуса и косинуса, а выражение в скобках очень напоминает известную формулу ;)

Подсказка 5

Имеем, что sin(2x)sin(x+ pi/2)= 1. Осталось лишь понять, какие же значения может принимать каждая из скобок ;)

Показать ответ и решение

Запишем ОДЗ.

{ sinx ⁄=0         πk
  cosx ⁄=0  ⇐⇒ x ⁄= 2-,k ∈ℤ

Домножим равенство на sin2x⋅cos2x:

√2sin xcos2x+ √2sin2cosx= cos2x+ sin2x

         √-      √ -
2sin xcosx(-2-cosx+ --2sinx)= 1
          2       2

           π
sin2x⋅sin(x + 4)= 1

Синус принимает значения из [−1;1],  поэтому равенство достигается только при

⌊ {
|    sin2x= 1
|| {  sin(x+ π4) =1
|⌈    sin2x= −1
     sin(x+ π4) =−1

⌊ {     π
|   2x= 2 +2πk,k∈ ℤ
|| { x + π4 = π2 + 2πn,n ∈ℤ
|⌈   2x= − π2 + 2πk,k∈ ℤ
    x + π4 = − π2 +2πn,n∈ ℤ

⌊ {     π
|   x = 4π + πk,k ∈ℤ
||| { x = 4 +π 2πn,n ∈ℤ
⌈   x =− 4 +π πk,k∈ℤ
    πk =− 2 + 2πn,n ∈ℤ

Решение первой системы:    π
x=  4 +2πn,  что удовлетворяет ОДЗ.

Вторая система не имеет решений для целых k,n.

Ответ:

 x = π+ 2πn (n∈ ℤ)
    4

Рулетка
Вы можете получить скидку в рулетке!