Арифметическая прогрессия (страница 4)

Арифметическая прогрессия \((a_n)\) задана условием \(a_n=-1,5-8n\). Найдите \(a_{12}\).
Из формулы следует, что \(a_{12}=-1,5-8\cdot 12=-97,5\).
Дана арифметическая прогрессия \((a_n)\), разность которой равна \(1,1\), а \(a_1=-7\). Найдите сумму первых 14 ее членов.
Так как для арифметической прогрессии верна формула \[S_n=\dfrac{2a_1+(n-1)d}2\cdot n,\] то \[S_{14}=\dfrac{2\cdot (-7)+13\cdot 1,1}2\cdot 14=2,1\]
(Для решения этой задачи достаточно знать, что такое арифметическая прогрессия – последовательность, где каждый следующий член на \(d\) (разность) больше, чем предыдущий. Тогда можно найти \(a_2=a_1+d=-7+1,1=-5,9\), \(a_3=a_2+d=-5,9+1,1=-4,8\) и т.д. до \(a_{14}\). Затем все найденные члены сложить. Но это слишком долго.)