Квадратичная функция

График какой из приведенных ниже функций изображен на рисунке?
1) \(y=-x^2-6x-5\qquad\) 2) \(y=x^2+6x+5\qquad \) 3) \(y=x^2-6x+5\qquad \) 4) \(y=-x^2+6x-5\)
Способ 1.
Ветви параболы направлены вверх, следовательно, коэффициент перед \(x^2\) в уравнении параболы положительный. Значит, выбираем между 2 и 3. Вершина параболы на рисунке имеет абсциссу \(x_0=-3\). У параболы 2 вершина \(x_{0_2}=\frac{-6}{2\cdot 1}=-3\), у параболы 3 \(x_{0_3}=\frac6{2\cdot 1}=3\). Следовательно, ответ 2.
Способ 2.
Парабола на рисунке пересекает ось \(Oy\) в точке \(y=5\) (то есть проходит через точку \(x=0, y=5\)). Среди данных формул точка \(x=0, y=5\) удовлетворяет лишь формулам 2 и 3. Также парабола на рисунке проходит, например, через точку \(x=-1, y=0\). Среди формул 2 и 3 эта точка удовлетворяет лишь формуле 2.
График какой из приведенных ниже функций изображен на рисунке?
1) \(y=-2x^2-4x+4\qquad\) 2) \(y=-2x^2+4x+4\qquad \) 3) \(y=4x^2-4x-4\qquad \) 4) \(y=2x^2+4x-4\)
Способ 1.
Ветви параболы направлены вниз, следовательно, коэффициент перед \(\,x^2\) в уравнении параболы отрицательный. Значит, выбираем между 1 и 2. Вершина параболы на рисунке имеет абсциссу \(x_0=-1\). У параболы 1 вершина \(x_{0_1}=\frac{4}{2\cdot (-2)}=-1\), у параболы 2 \(x_{0_2}=\frac{-4}{2\cdot (-2)}=1\). Следовательно, ответ 1.
Способ 2.
Парабола на рисунке пересекает ось \(Oy\) в точке \(y=4\) (то есть проходит через точку \(x=0, y=4\)). Среди данных формул точка \(x=0, y=4\) удовлетворяет лишь формулам 1 и 2. Также парабола на рисунке проходит, например, через точку \(x=1, y=-2\). Среди формул 1 и 2 эта точка удовлетворяет лишь формуле 1.
На одном из рисунков изображен график функции \(y=-x^2+3x+3\). Укажите номер этого рисунка.
Коэффициент перед \(x^2\) в уравнении параболы отрицательный, следовательно, ветви параболы направлены вниз. Значит, выбираем между 3 и 4. Парабола 3 имеет отрицательную абсциссу вершины, а парабола 4 – положительную. В данном уравнении абсцисса вершины равна \(x_0=\frac{-3}{2\cdot (-1)}>0\). Следовательно, ответ 4.
На одном из рисунков изображен график функции \(y=-2x^2+12x-16\). Укажите номер этого рисунка.
Коэффициент перед \(x^2\) в уравнении параболы отрицательный, следовательно, ветви параболы направлены вниз. Значит, выбираем между 1 и 4. Парабола 4 имеет отрицательную абсциссу вершины, а парабола 1 – положительную. В данном уравнении абсцисса вершины равна \(x_0=\frac{-12}{2\cdot (-2)}>0\). Следовательно, ответ 1.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ:
1) \(y=-x^2-6x-6\qquad \) 2) \(y=x^2+6x+6\qquad \) 3) \(y=x^2-6x+6\)
В таблице под каждой буквой укажите соответствующий номер.
Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline && \\ \hline \end{array}\)
Если ветви параболы направлены вверх – то коэффициент перед \(\,x^2\) положительный, вниз – отрицательный. Парабола Б – единственная, ветви которой направлены вниз, следовательно, ей соответствует формула 1.
У параболы А абсцисса вершины положительная, у параболы В – отрицательная. Так как из формулы \(y=ax^2+bx+c\) абсцисса вершины ищется как \(x_0=\frac{-b}{2a}\), то А – 3, В – 2.
Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline 3&1&2 \\ \hline \end{array}\)
В ответ запишем 312.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ:
1) \(y=-x^2-7x-11\qquad \) 2) \(y=x^2+7x+11\qquad \) 3) \(y=x^2-7x+11\)
В таблице под каждой буквой укажите соответствующий номер.
Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline && \\ \hline \end{array}\)
Если ветви параболы направлены вверх – то коэффициент перед \(\,x^2\) положительный, вниз – отрицательный. Парабола А – единственная, ветви которой направлены вниз, следовательно, ей соответствует формула 1.
У параболы Б абсцисса вершины отрицательная, у параболы В – положительная. Так как из формулы \(y=ax^2+bx+c\) абсцисса вершины ищется как \(x_0=\frac{-b}{2a}\), то Б – 2, В – 3.
Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline 1&2&3 \\ \hline \end{array}\)
В ответ запишем 123.
На рисунке изображен график функции \(y=ax^2+bx+c\).
Каковы знаки коэффициентов \(a\) и \(c\)?
1) \(a<0, c>0\qquad \) 2) \(a<0, c<0\qquad \) 3) \(a>0, c<0\qquad \) 4) \(a>0, c>0\)
Так как ветви параболы направлены вверх, то \(a>0\). Следовательно, либо 3, либо 4. Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)
Из рисунка видно, что парабола пересекает ось \(Oy\) на положительной части, то есть \(c>0\). Значит, ответ 4.